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1 Temperature Distributions with More Than One Independent
Variable

1.1 The Microscopic Energy Balance

e The microscopic energy balance states that

ot

A [ OT
pCp [+U~VT] =-V.q

where v and ¢ are vector quantities

e In the limit of no convection and applying Fourier’s law,

A 0T
Cpo— =(V-kVT
where Fourier’s law is
. . . AT
— This can be occasionally rewritten as ¢ = kT

e Occasionally, k can be assumed to be independent of temperature, which then makes the energy balance

oT
— =aV’T
o~ “
where « is the thermal diffusivity defined as
k
o= —
pCp

— The units of « are length-squared per unit time

x The units of k are frequently watts per meter-kelvin=
e The heat flow is given as

Q:/Aqu

which simplifies to the following if ¢ is assumed to be uniform over the area (e.g. if you use an average
heat transfer coefficient, h to find q)

]quA:—AWT\

e The energy over a period of time can be given by

t
EzA/ qdt
0

1.2 Unsteady State Heat Conduction: Separation of Variables Technique

Before I begin this section, I’d like to point out that Section 1.2 is not explore in full rigor, and you are not
advised to try to understand the poor explanations I've included here. The takeaway points are how to use
the technique of separation of variables and that we add the unsteady state term to the steady state term
to get a true equation for the temperature profile.

Problem: Consider a rod of length ¢, initially at Ty, that is perfectly insulated except at the ends (such
that there is 1-D flow of temperature). Find the steady-state temperature profile if the left side is held at a
constant 77, and the right side at a constant T



1.2.1 Introduction

1.
2.

Since we are not worrying about radial temperature, we shall use Cartesian coordinates

The boundary and initial conditions are

T(0,t) =Ty,
T(0,t) = Tx
T(l’,O) = T()

Try a solution of

The microscopic energy balance is
oT 0T
= g
ot Ox?
Therefore, plugging in the trial solution yields
XT' = aTX"
which can be rewritten as

T’ X
? = aY = Constant

Now, we analyze the possible conditions

(a) If the expression equals zero, it is the steady-state solution
(b) If the expression equals a positive quantity, then the temperature would increase up to (positive

or negative) infinity, so it is unphysical. This is shown below (where C? is some arbitrary positive

constant):
T’ 1dT

C? 5 —— =7
T dt
now rewriting this (temporarily) using the differential operator D yields
DI —-C*T=0-T(D-0C?) =0
which has roots of
D =C?
such that the solution to the ODE is
T=0 exp (C’Qt)

which approaches infinity if C; is positive and negative infinity if C is negative

(¢) If the expression equals a negative quantity, then the temperature would be something that’s
feasible. The same mathematical progression would show that for a negative constant (—C?):

T = Cyexp (—Czt)

which decays to zero at infinite time. Since ¢ — oo is steady-state, the T(t) term should drop out
(i.e. the transient term goes to zero), which it does. Therefore, a negative constant value is the
unsteady state solution

7. Let’s tackle this problem by addressing the steady-state solution, then the unsteady state solution, and

finally adding them together



1.2.2 The Steady State Solution

1. If the expression equals zero (the steady state solution), then we can evaluate this as follows:

T’ R
f:0—>T:C1
T

"

aX 0— CQ +C;3

such that
T (:L’,t) = (CQX + 03)

and creating a new constant will yield
T (z,t) = C4 X + Cj
which can be solved using the boundary and initial conditions to yield
T(0,t) =T, =C5s
Tt)=Tr=Cyl+Cs
so for the steady-state solution to heat conduction in a rod that is perfectly insulated except at the
ends:

T (x,t) = (TRZTL>QT+TL

1.2.3 The Transient Solution (both steady and unsteady state)
1. If the expression equals a negative constant (i.e. —C?), let’s try the differential equation of

X// 5
~ - ¢

Rewriting this (temporarily) using the D differential operator yields
DX +C?°X=0— X (D*+C?) =0

which has roots of

D=4y-C?=4iv(C? = +iC

such that the solution of the ODE is
X =C14,c08(Cx)+ Cypyysin(Cx)
2. Let’s now try the other differential equation for a negative constant,
T/
7

—C?
which can be solved, as earlier with C?, to yield
T = Cs 4 exp (—C%at)
3. Finally, we can write the solution as
T=XT = C5. exp (—Czat) [Cy 4,5 cos (Cx) + Cap i 8in (Cx)]

which can be rewritten absorbing C's , into the other constants to yield

Tyss = €Xp (—C2at) [Ch 4 cos (Cx) 4+ Cy 5 sin (Cz)]



4. Since we defined the problem to be at steady state at x = 0 and x = ¢, it is clear that T,s; = 0 at

these values. Therefore, Cy , =0 and Cy, = exp (—C2at) Bssin (CY)

. Since we just stated that T,ss = 0 at x = £, we have an issue. We can have B = 0, but that means

Tuss = 0 for all x and t. Clearly that’s not possible. There are no parameters to alter in exp (—020415)
either. This leaves us with forcing the sin (C¢) term to zero. To do this, we can state that C,, = —

where n is an integer greater than or equal to 1. Rewriting our expression for the unsteady state
2.2
. nrrat . (NTX
temperature yields Ty, s = exp (_62> B, sin (7)

. After a lot of math and applying the half-range sine expansion in addition to the initial conditions, we

100
find that for the case of Tg = 100, T, = 50, and T (x,0) = 100 that B,, = P and
™

-0 S [T (75
n=1

for both steady and unsteady state

1.3 Heating a Semi-Infinite Solid

Problem: Consider a solid material occupying the space from y = 0 to y = oo that is initially at temperature

Th.

At time t = 0, the surface at y = 0 is suddenly raised to temperature 77 and maintained at that

temperature for ¢ > 0. Find the time-dependent temperature profiles T'(y,t). Assume a constant k.

Solution:

1. The microscopic energy balance in the y direction states that

or 0T

at "oy

2. We can introduce a dimensionless variable of

T—1Ty

@ =
Ty —1To

to simplify the calculations such that
00 0’0
= a=
ot y
3. The boundary and initial conditions state that:

©(y,0)=0
000,t)=1
O (c0,t) =0

4. Since © is dimensionless, it must be related to Y since this (or multiplicative scale factors of it) is

@
the only possible dimensionless group from the given variables. Therefore,
©=0()

where
Y

= Vot

(a) The v/4 term in the denominator is included for mathematical simplicity during the derivation




5. The differential equation in Step 2 can be broken down from a PDE to an ODE
(a) First,
00 _ 000y
ot On ot

0
The value for 8—;7 can be found from taking the derivative of n with respect to ¢t. This yields

96 _ _doln

ot dn2t
(b) Next,

00 _ 96 o

dy — On oy

0
The value for 8—77 can be found from taking the derivative of 1 with respect to y. This yields
Y

9 _do 1
dy  dn Viat

2
i. We want @ though, so
Oy?

0%0 0 (00\  d*© 1
oy Oy

B dy ) dn? dat
(¢) Therefore,
PO, i

on—— =
d772+ ndn 0

6. A new set of boundary conditions are needed for 7

(a) At n =0, © =1 since this is when y = 0, and it was stated earlier that ©(0,t) =1
(b) At n = oo, © = 0 since this is when y = oo, and it was stated earlier that ©(oo,t) =0

do
7. To solve this differential equation, introduce ¥ = I to make the equation
Ui

d
W =0
dn

(a) This yields,
¥ = Crexp (—n?)
8. Integrating 1 yields,
n
0=0C / exp (—772) dn + Cs
0

9. The boundary conditions of ® = 0 and © = 1 can be used here to find C; and Cs, which produces the
equation
©(n) =1—erf(n)

which corresponds to the following solution for the heating of a semi-infinite slab!:

T(yv t) — TO o

Yy
0= =1—erf| =
T —Tp : (\/4at>

1Ty is the initial temperature, T} is the surface temperature, and 7" is the temperature at a point in space and time afterwards



(a) Important Point: The above expression tells you about the temperature at some point along

the semi-infinite axis. If you have a semi-infinite object, but you want to find the temperature
somewhere on the finite axis, then this is not the equation for you.

10. If the heat flux is desired at the wall (i.e. surface)?,

oT k
s = = —k‘i = T — T
q ley_o ay =0 /r_at( 1 0)
since d 5 i
4 —— 2) 4
o (erf (u)) = Nz exp (u?) o

e As a side-note, the thermal penetration thickness, dr, is defined as the value of n when erf (n) = 0.99
(such that there is a 1% change in ©). This occurs close to n = 2, so

1.4 Heating a Finite Slab

Problem: A solid slab occupying the space between y = —b and y = b is initially at temperature Tp. At

time ¢ = 0, the surfaces at y = +b are suddenly raised to T} and maintained there. Find T'(y,t). Assume a
constant k.

Solution:
1. The microscopic energy balance in the y-direction states that

or_ 0T
ot~ Yoy?

2. We can introduce the following dimensionless variables to simplify the math:

T -T

G_E—R

(a) It should be noted that the steady state solution goes to zero because at t = oo, T' = T} such that
O=0forall7>0

3. This makes the microscopic energy balance now read

o0 _ 0%
or  On?
4. The initial and boundary conditions are now:
(a) At 7=0,06=1
(b) Atn=+1,0=0for7>0

VkpC . \k2p2C
2Additional expressions: qs = \/pitp (T1 — Tp). At constant AT and At, 952 _ 220 P2
T

=Y "% The energy (J/m2) over a
qs,1 Vk1p1Cp1

2kvt (T — Tt
period of time is £ = fg gs dt = M.



5. We can implement the method of separation of variables by stating
©m7r)=r(M)g(r)

6. Substituting the trial solution for © yields

fg' =gf"
7. Dividing by fg yields
ldg _1d%f
gdr — fdy?

8. If the left side is a function of only 7, and the right side is a function of only 7, then both must be
equal to some constant. The constant will be chosen as —c? solely to simplify the math. Therefore,

dg_ 2
dr €9
&f
ag =

9. Integrating the above equations yields
g = Aexp (—027)
f = Bsin(cn) 4+ C cos (cn)

10. The integration constant B must equal zero since © (7, 7) must equal © (—7, 7) due to symmetry about
the zz-plane. Applying the boundary conditions then yields

Ccos(c) =0

(a) If C =0, then the temperature profile is always zero, which cannot be the case. Other solutions

exist as follows: .
c= (n + 2) ™

n=0,+1,42, .. +oo

2
0, = A, exp ( <n + ;) 7r27> C,, cos <n + ;) ™

12. Since © is the sum of all ©,,,

> 1\ 1
6= ZDneXp (— (n—|—2) 7r27'> cos (n+2) ™

n=0

where

11. Therefore,

where
Dy = AnCp + A_(n41)C—(nt1)

13. Applying the initial condition yields

- 1
1:ZDncos<n+2>7m

n=0



14. The solution for D,, is the following (see BSL for more details)
2(-1)"

15. Plugging D,, into the equation for © in Step 12 yields

T, —T > (=) 1\° ,at 1\ y
TlTOQZ(1)7TeXp<(n+2) ﬂb—Q cos n+§ 7TE

n=0 —
n -+ 2

D, =

(a) The solution to this equation (as well as the analogous equations for cylindrical and spherical
systems) is graphically shown in BSL Figures 12.1-1, 12.1-2, and 12.1-3

16. For a cube-like solid,

-7 xz ot Yy at z at)
T1—T0_@<a7a2>@<b7b2)@<c’62>_@wgyez

where each side is 2a, 2b, and 2¢

(a) Important Note: You multiply the © of every finite dimension you have. For a semi-infinite
cylinder, you would just use®,., but for a finite cylinder, you’d have to do ©,.0,.

(b) Important Note: The middle is 0 since the top is a and the bottom is —a

1.5 Complexification
1.5.1 Background

e Recall that _
e = cosf +isinf

e The approach to complexification is to translate a real system to a complex one, solve the system, and
extract the real part of the solution (frequently used with periodic conditions)
1.5.2 Unsteady Heat Conduction near a Wall with Sinusoidal Heat Flux

Problem: A solid body occupying the space from y = 0 to y = oo is initially at temperature 7. Beginning
at time ¢t = 0, a periodic heat flux is given by

¢y = qocos (wt) = R [ei‘”t]

is imposed at y = 0. Here, qo is the amplitude of the heat flux oscillations, and w is the frequency. It
is desired to find the temperature in this system, T'(y,t), in the periodic steady steady state. Assume a

constant k.
Solution:

1. The microscopic energy balance in the y-direction states that

oT o*r
RNl
ot Oy?
0
2. If both sides are multiplied by —k and both sides are acted on by the operator — then with a little

dy
b or 92 or
ot <_k8y) By (_kay>

10

rearrangement,



. The definition of heat flux can then be used such that

9ay _ 0%y
ot Oy?

. The boundary conditions are:

(a) Aty =0, gy = qoR [¢f]

(b) Aty =00,¢,=0

. We postulate an oscillatory solution of the form

¢ =R [qoeiwt]
where ¢° of a complex function of y

. Substituting the trial solution into the equation in Step 3 yields

o, —iw quo iw
R[q iwe t] aR[der t}

where ¢° means complex ¢

. The above expression is mathematically equivalent to

P (i)
dy? A

. The new boundary conditions are:

(a) Aty =0, ¢° = qy
(b) Aty:OO,qo:()

. The differential equation has the solution of

q° = Ciexp (y\/ M) + Cy exp <— (1 —|—i)y\/ M)
a 2x

. Since Vi = + (1) (14 1),

V2
¢ =Crexp <(1 +i)y 2(’;) + Cyexp (—(1 +i)y\/g>

. The second boundary condition requires that C7; = 0, and the first boundary condition requires that

C5 = qo. Therefore,
w
° = —_— 1 )
q qoexp< ( +z)y\/2a)
. As such,

R S M ST

. The above expression is equivalent to

w . w
=qe —y4/ =— | cos | wt — —
Iy = 90 eXP { —Y\[ 5, N o,

11



14. Integrating Fourier’s law yields

1.6 Laplace Transforms
1.6.1 General Definitions

e The Laplace Transform, a linear operator, is defined as

F(s) = /OO e SF(t) dt

0

e We write the Laplace transform as

F(s) = Z[f(t)]
o If F(s) =.Z[f(t)], then we say that f(t) is the inverse Laplace transform, written as
f&)y =271 [F(s)]
e The First Shift Formula states that
L[ f(t)] =F (s —a)
where F(s) = Z[f(1)]

Equivalently,
e Equivalently P F(s)] = Jat 1 F(s 1 a)]

e The Second Differentiation Formula states that

2 f()] = (~1)"-L

dsm

2 [f@)]

e While the Laplace and inverse Laplace operators are linear, they have analogous properties with inte-

grals, so Z [A- B] # £ [A] - Z [B]

1.6.2 Common Transforms

e The following is a list of basic transforms and inverse transforms:

Z [e’\t] = %)\ and Z~! L i )\] =M
Z] = 1 and Z~! [1} =1
s s
ol 1]

2Lt = gn+l and & Ln}  (n—1)!
ZJeos (Bt)] = ﬁ and 27! [52 Ji 52] = cos (ft)
Zsin (Bt)] = _B_ and Z~! [1} _1 sin (St)

52 _|_52 52 _|_52 B

12



1.6.3 Using the Laplace Transform to Solve Initial-Value Problems

1. Transform both sides of the differential equation, incorporating the initial data by means of the first
differentiation formula,

L [DFz| = 5.2 [2] — sF712(0) — s"722/(0) — ... — ¥ 7D(0)

h D=—
where 7

2. Solve algebraically for .Z [x] in terms of s

3. Obtain z as the inverse Laplace transform of the equation found in Step 2

1.6.4 Reworking the Semi-Infinite Slab

e First, realize that Laplace transforms convert the ¢ to s such that

Z10 (z,t)] =06 (z,s)

e Recall that

O(z,0)=0
0(0,t)=1
O (00,t) =0
e The differential equation that applies for this system (if we consider the z direction) is
00 0’0
=
ot Ox?
e Taking the Laplace transform of both sides yields the following once the first differentiation formula is
used,
0?0
e Since we said that .2 [0] = O,
_ 0?0
sO = QW
e Rewriting this with more familiar notation yields
o'="6
«a

e The boundary conditions can be rewritten using the Laplace transform as

@(0,5)2%
O (00,5) =0

e Recall that this second-order homogeneous differential equation can be solved as

D26 — é:0—>é(D2—f):o

S
« (0%

such that the roots are
s
D=4,/—
o

which means that the solution is
~ s s
(C) C1 exp (az,/) + Cyexp <—ac,/>
o «

13



e Applying the second boundary condition yields C; = 0 such that
- /s
© = Chyexp (—x )
Q@

1
e The second boundary condition yields C; = — such that
S

6= 1exp <x\/?>
s a

e This Laplace transform is tabulated and can be readily found to be

T
©=1-ecrf
. <\/4at>

2 Boundary Layer Theory for Nonisothermal Flow

2.1 Velocity Boundary Layer

e The local friction coefficient is defined as

— Don’t forget that 74 is evaluated at y =0

e The boundary layer thickness for a velocity boundary is where u = 0.99u«

e Recall that the shear stress is given by

ou
Te = b
S lu’ay y:O

2.2 Thermal Boundary Layer
e The thermal boundary layer looks like the following (for T > Tw)

—_— T Free stream 540

Thermal

T
y f boundary
L 5|1 layer
[ox e— 71—
e For a thermal boundary layer, the boundary layer thickness is the position where
e The local surface heat flux can be obtained by
oT
Qs| = —ky— —h(Ts_TOO)
y=0 f ay y=0
such that
i oT
—kp——
h— — =0
Ts — T

T, - T
Ts_Too

=0.99



e Also,
Q:/qus = (T —Tw)/hdAs

which is equivalent to

’Q:BASCTS_TOO)‘

where h is the average convection coeflicient for the entire surface

— For a sphere, A, = 47r? = 7 D?
— For a cylinder, A; =27rL = 7DL
— If it’s a 1-D characteristic length (such that @ has units of W/m) for a cylinder or sphere, then

it’s L =2wr = wD
o It follows that )
h== [ hdA,
i/

— For 1D heat transfer of a flat plate?,

_ 1 rL
h:—/ hdx
L 0

2.3 Laminar and Turbulent Velocity Boundary Layers

Streamline

| Turbulent
region

} Buffer layer

} Viscous
sublayer

[—Laminar > > Turbulent
Transition

e The term x, marks the transition between the laminar and turbulent regions

e The turbulence brings in fluid from the undisturbed main stream closer to the plate

= 1
heurs =[5 Mam () d + [7 heurs (@) d]

15



ou < da
dy|y=0,lam  dy|y=0, turb
L A
oo U,
u(y) N a(y) — -
A N y >
> o
ﬂ ﬁy y= 0
dyly=0 '/J
Laminar Turbulent

e The Reynolds number is defined as*

PlUoo®  UsoT
Re, =

=
X

where

S
If

SRS

e The critical Reynolds number that marks the transition from the laminar to turbulent regions is
approximated as the following for a flat-plate

Reg . =5x 10°
e Differences in the thickness of the velocity and thermal boundary layers tend to be much smaller in

turbulent flow than in laminar flow since turbulence causing mixing that reduces the importance of
conduction in determining the thermal boundary layer thickness

2.4 The Momentum and Energy Balance

e The assumptions that shall be used here include: steady state, incompressible fluid, no body forces
(ignore g), constant properties (e.g. p, p), and continuity (i.e. no mass accumulation)

e Recall that the momentum balance states that

p<a;+7.v7) = VP +uV37 +pq

For the system we are describing, this simplifies to

p(V-VU)=-VP+uV*y

If we state that v = v, and v = v, the z-momentum equation is
ou n ou 0%u n 0%u oP
u— +v— | = —+— |- =
P\ "oz Oy H\ 922 Oy? oz

The full energy balance is given by

pCyp (V- VT) = kVT + u®

where p® is the viscous dissipation term

Re x
4 Additional expression: —=% = =<
Rey, L
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2.5 The Boundary Layer Equations

e The additional assumptions for boundary layer theory is the gradients perpendicular to the surface are
much greater than the gradients parallel to the surface and that P,, changes slowly with x such that

OP  dPy

ox ~ dx
where P is the pressure gradient within the boundary layer and P, is the pressure gradient of the free
stream

e The z-momentum equation simplifies to the following inside the boundary layer

ou n ou 1dP, n 8%u
U F Ve = ———— V=

Ox Oy p dz Oy?
0%u 2

Ox? Oy
than those along the surface)

since in the boundary layer (i.e. gradients normal to the object’s surface are much larger

e The energy equation simplifies to the following as well
or  or _ T v (Ou 2
U F+V— =a—5 + — | =—
or oy oy?2  Cp \ Oy
since
o*r < 0T
Ox? Oy?
e With no viscous dissipation
T T T
ox oy  Oy?
2.6 Boundary Layer Similarity

e To non-dimensionalize our equations, we introduce the following variables:

% X
r = —
L
y*:g
L
U
ut = —
\%4
« v
v = —
%4
T-T.
T = — %
T —T,
*_POO
_pV2

e The shear stress can be expressed equivalently as

such that




e The non-dimensionalized z-momentum equation states that

u*ﬁu* U*ﬁu* _ apP* N 1 0?pP*
ox* dy*  dx* = Rep Oy’

— The boundary condition at the wall is u* (z*,0) = 0 and for the free stream is u* (z*,c0)

Uoo (¥)
|4
— The similarity parameter used is
ulL
ReL = —
v

e The non-dimensionalized z-thermal equation states that

T LOT 1 0T
u v =
ox* dy*  RerPr Oy**

— The boundary condition at the wall is T (z*,0) = 0 and for the free stream is 7™ (z*,00) = 1

— The similarity parameter used is

v momentum

P = — =
" @ thermal
dpP* dpP*
e We expect that u* = f | «*, y*, yRep | and T* = f | %, y*, , Rer,, Pr
dx* dx*
e The heat transfer coefficient can be expressed similarly as
o kg oT*
L oy |,._,
e The Nusselt number is defined as
hL  OT*
Nu = = o = f(«*, Rer, Pr)
k‘f 6y y*=0
— AL
Nu=— = f(Rer, Pr)
kg

e It is also true that o
Nu = CRe7'Pr"

so the following plots are true

Nu; = CRe]"Pr"

— Ni
Log Nu, Log (ﬁ)
® Prt

Log Re;. Log Re;
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e Thermophysical quantities are frequently measured at the film temperature, which is defined as

T+ T

Ty >

— Unless otherwise stated, evaluate thermophysical quantities at the film temperature. An exception
to this would be evaluating the heat flux at a surface. Since you're evaluating it at the surface,
you’d use the thermophysical properties at the surface temperature and not the film temperature

3 External Flow

3.1 Flat Plate in Parallel Flow
3.1.1 Hydrodynamic Solutions
e The Blasius solution states the following (it ignores P)

o oo
ox dy  Oy?

e The thermal boundary layer distance scales as

51) ~
Uoo
and
ugo Voo
~Y

2
x 02

e The stream function is defined as

L
%

and

_oy
or

— Note that the signs are reversed for v and v in BSL

o We will then define

_ P B %%
f(ﬁ)—im—) Y = uso f(1) .
Uooy | —
Uso
and
Uoo
=Y\ —
VT
e It turns out that®
u _ 9
Uso AN
Ou  Uso df

or 2a:nd172

Ou _ [uco &*f
oy b Ve dn?
Pu  ui, df

oy va dip

5T am now writing f(n) as simply f
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éf P

e These equations can be combined with the momentum balance to yield (see BSL 4.3, 4.4)

i
whose values are tabulated in Table 7.1 of Incropera

3.1.2 Laminar Flow Equations
e See Incropera Section 7.2 for the math, but
5 5x

since —— = 0.99 for n=>5

Uoo
e The shear stress at the wall may be expressed as
ou Uoo d2f
= U _—
=0 Al Vi dn?

Ts = U7
Oy =0
SO
o 0.664pu?
T = 0.332u00 | PHY2 = Pl
T 2v/Re,,
kg
m - s2

— Note that the unit of shear stress is N/m? or, equivalently,

e At the boundary layer (i.e. n = 5), the local friction coefficient is
27, 0.664

Cro= 2% =
b= o2, ~ VRe,

3.1.3 Heat Transfer Solution (Laminar)
e The energy equation in the boundary layer without viscous dissipation can be rewritten as the following
when the dimensionless temperature is introduced and a similarity solution of the form 7% = T* (n) is

assumed:
d2T* +ﬁde* _0
dn? 27 dp

with boundary conditions of 7%(0) = 0 and T*(c0) =1

e For Pr > 0.6, the surface temperature gradient is given as

dr*
=0.332Pr'/3
dn =0
e The local convection coefficient can be expressed as
ho— qs B —(TOO—TS)kaT* _ k(uﬁfﬂ dT*
T —Te  Ts—Ts dy y:O_ vr dn =0
e From this, we can state that (for Pr > 0.6)
hox 1/2p,.1/3
Nu, = T 0.332Re,/“Pr
which means that
0y 1
v ppl/3
5
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3.1.4 Average Boundary Layer Parameters (Laminar)

e The average boundary layer parameters are

o 1.328
" VR
and _
N, = hzx — 0.664ReY/2Pr!/?
for Pr > 0.6 since -
hy = 2h,

3.1.5 Turbulent Flow

e The equations for turbulent flow over a flat plate, the local friction coefficient is approximately
Cy. = 0.0592Re, '°

for Reynolds numbers between R, . ~ 5 X 10° and 108

e Also, the velocity boundary layer thickness is

6 = 0.37xRe; /5

e The local Nusselt number for a Prandtl number between 0.6 and 60 is

Nu, = 0.0296 Re?/® Prt/3

3.2 Cylindrical and Spherical Systems in Cross Flow

o At the leading edge (6 = 0),
Nup = 1.15R61D/2P7"1/3

e For a cylinder, Hilpert’s relation states that

— hD
Nup = - = CRepPri/3

for Pr > 0.7

TaBLE 7.2 Constants of Equation
7.52 for the circular cylinder in
cross flow [11. 12]

Rep, C m
0.4-4 0.989 0.330
4-40 0.911 0.385
40-4000 0.683 0.466
4000-40,000 0.193 0.618
40,000-400,000 0.027 0.805

e Note that the transition for cylindrical cross flow is R, . ~ 2 x 10°
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e Technically, there is a more accurate equation for the average Nusselt number for cylindrical cross-flow

3.3

3.4

given by the following expression,

Niu,;) =03+

4/5
0.62Re}*Pr/3 [ ( Rep >5/8] /

a11/4
. % 2/3 282000
Pr

that is valid for all Rep and Pr > 0.2

For a sphere,

Nup = 2+ 0.6Re),”Pr'/?

Technically, there is a more accurate equation for the average Nusselt number for spherical cross-flow
given by,
o 1/4
Nup =2 + (0.436}3/2 + 0.06R62D/3) Pro4 <“°°>
Hs
where all properties except s are evaluated at T, and is applicable for 0.71 < Pr < 380, 3.5 < Rep <

7.6 x 104, and 1 < *£ < 3.2
s

Potential Flow

There really isn’t much to say here. See my Transport Phenomena I review packet for a detailed
description of potential flow

The stream functions are defined as o0
oy

_ oy
T oz

As streamlines are more compact closer to the sphere or cylinder in potential flow, it means the velocity
of the fluid is increasing

and

v

Sphere in a Water Bath

Problem: Consider a hot sphere in a cold bath such that it is quiescent (i.e. no flow - only conduction) and
is at steady state

e Always start with boundary conditions. They are, for T'(r):

T(x) =T
T(R) = Tx

e There are two ways to approach this (both will yield the same answer). We can try a differential

approach (as opposed to a microscopic energy balance) where

47rr2qr| Tp—p — 47rr2qr 0

|r:r+Ar =

such that it reads “conduction in minus conduction out equals zero.” Note that it is area times flux in
minus area times flux out. The area here is 47r? for a sphere

e This expression can be rewritten by dividing through 47 and dividing by dr such that

d
o (TQQT) =0
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e Using Fourier’s Law,

d ( ,dT
m(Tm>0

— Note that this equation could also have been obtained using the spherical equation of the micro-
scopic energy balance such that

1 d dT d dT
V2T = 0 — 2 =0 = (222 ) =
r=0 r2dr<r dr) 0 dr<r dT‘> 0

once constants (i.e. —k) are factored out

e Anyhow, we can integrate the above expression twice to yield

C
T = - + Oy
T
which turns to the following when boundary conditions are applied:
R T—Ts R
T=—TR—To)+Toe =+ ——— = —
T (Tr )+ Thr — T T

e The radial flux from the sphere surface can be found by

dr k(ThR — Tw)
7= —k— =
Url-r dr | _p R
e We know that Newton’s law of cooling applies at the solid-liquid interface, so
k(Tr — Two) k 2k
—————— =h(Tp — T h=—-=—
R Tr=Tx) 2 h=%=7
. hD
e Recall that the Nusselt number is defined as Nu = 7 SO
Nu=2
for solely conduction in a sphere
4 Tube Flows
4.1 Area Average Quantities
e An area average quantity is defined as
=L

-~ [[adA

e For the area average shear stress around a sphere,

(r) = [] 7 (r,z)rdrdd
fo% fy rdrdd

e The mixing cup temperature is defined as

Tmc =

e At a constant heat flux,
OT(r,z)  dTp.
0z  dz
where both quantities are for fully developed thermal regions and laminar flow in a tube. Therefore,

the axial temperature gradient is independent of the radial location
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4.2 Laminar Flow in Circular Tubes

4.2.1 Heat Flow

e The log-mean temperature difference is defined as

AT, — AT;
| AT,
n
AT;
where the subscript ¢ represents the fluid flow through the tube, and the subscript o represents fluid
flow over the tube

AEWL =

For internal flow in a circular cylinder,

Q = haDLAT,,,

From Transport Phenomena I, we know that for laminar flow in a circular tube, v ez = 20, mean and

LBy

It will simply be stated that

hD

for laminar flow in a circular tube with constant surface heat flux

To see how the local Nusselt number changes with different conditions, consult Figure 14.2-1 in Bird,
az

which shows a plot of Nuj,. vs. D2

Diffusivity and the Mechanisms of Mass Transport

Kinetic Theory and Lennard-Jones Potential

The Kinetic Theory of Gases makes the assumption that all atoms are “hard spheres” that collide
elastically and there are no intermoelcular forces. From this:

— The mean free path is given as

1
A=
V2rd2n

where d is the diameter and n is the number density

— The mean molecular speed is

8kpT
™m

u =

where kp is Boltzmann’s constant (i.e. 1.38 x 10723 m? - kg -s=2 - K1, or, equivalently, 1.38 x
1072 J/K)

— The collision frequency is

— The dynamic viscosity is

i = Sppy = 2 YrmksT

b= —nmu\ = ng)‘ = —
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— The thermal conductivity is given as

J/mksT
k= %nkgﬁ)\ _ ymksT/m

md?

and has units of K/m

e The Lennard-Jones potential states that that

5.2

o= e[(2)°(

g

r

)]

where ¢(r) is the potential energy, o is the characteristic diameter of the molecules, and ¢ is the

maximum energy of attraction between a pair of molecules
— The values for ¢ are tabulated in Table E.1 of BSL

The viscosity of a pure monatomic gas may be written as

- Ex/ﬂkaT

H= 16 7mo2Q,

=2.6693 x 107°

vVMT
020

m

where the second equation has o with units of angstrom, 7" with units of Kelvins, M is the molecular

weight (unitless), and p with units of g/cm - s

— Q,, is called the collision integral for viscosity and is tabulated in Table E.2 of BSL

The thermal conductivity using Lennard-Jones parameters is

1.989 x 104 | =
P M

o2Q

123

Fick’s Law of Binary Diffusion (Molecular Mass Transport)

If we define w; has the mass flow of substance 4, w; as the mass fraction of substance 7, %;; as the

diffusivity of ¢ in 7,
w; Aw;
A=
where % is the mass flux of substance i

— The units of %;; are length-squared per unit time

Zwizl

— It is also important to recall that

This can be rewritten as

%
Ji=—pZi;Vw;

where j; is the mass flux of substance i. This is Fick’s Law.

— The mass flux is defined as j; = pw; Av;
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5.3

— The mass flux is measured with respect to the motion of the center of mass, so
> =0
i

In general, for a mixture,

v = E w;V;
i

which translates to “the velocity is equal to the sum of the mass fraction of each substance times its
respective velocity”

The Schmidt number is defined as

v
Sc =
ij
The Lewis number is defined as o
Le =
Also, recall that the ideal gas law states
_ MP
P=Rr
and
P
c=—
RT
where c is a molar density defined as ¢ = ﬁ
The mass fraction is most frequently written as
w; = &
p
when volume is constant
— In addition,
o
M
The mole fraction is most frequently written as
Ci
T, = —
c

when volume is constant

Temperature and Pressure Dependence of Diffusivities

For a binary-gas mixture at low pressure,

PPap ., ( T )b
12— "\ T.aT.
5 1 1 cAlc
(PCAPCB)l/S (CZ—‘CAT‘CB)Q/l2 — + — o
My Mg

where the subscript ¢ represents a critical property, which can be obtained from Table E1 in BSL. In
this equation, Z4p has units of cm? /s, P has units of atm, and T has units of K

— For a non-polar gas pair, a = 2.745 x 10~* and b = 1.823 (excluding helium and hydrogen)
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— For a non-polar gas and water, a = 3.640 x 10™* and b = 2.334

e Interdiffusion is synonymous with self-diffusion and is denoted by Z4 4~

— Using reduced temperatures and pressures, one can find the reduced self-diffusivity from Figure
17.2-1 in BSL if ¢Z4 4~ is given at a specific temperature and pressure. Recall that

Reduced quantity=

* To implement this method, realize that the (cZ4.4+)
temperature and pressure changes. Therefore, if you are given c¢Z44- at one temperature
and pressure and want it at another temperature and pressure, use Figure 17.2-1 to find the
critical diffusivity, and then use this value at the new reduced pressure and temperature to

find the new (not critical) diffusivity

Regular quantity

(s

is constant for a given system even if

Critical Quantity

— Another way to find the self-diffusivity is to use the equation

e For a binary-gas mixture at high density and low pressure, one can use Figure 17.2-1 by replacing the

(cZap), =2.96 x 10~° (

1
My

1 >1/2 Pff
Ms) 1"

7_’_7

where c is a concentration given in mol/cm?

above formula with

1
=296x107°% [ — + —
(C@AB)C X (MA + Mp

1

>1/2 (PcAPcB)1/3

(TCATCB)1/12

5.4 Theory of Diffusion in Gases at Low Density

e The kinetic theory of gases states that, for rigid spheres,

e With the use of Lennard-Jones constants, the above equation can be rearranged to

2 [kgT |1 1 1 1 1
Dap=z\—4/z| —+— 5 —
3 T 2\maqa mp <(dA+dB)) n
o =ATTB)
2

— If the ideal gas law is assumed,

e If not given, the values for o4 and 45 can be given by (for nonpolar gas pairs)

and

1 1 1
=22646 x 107> /T [ —+ — | 0——
¢Zap x \/ (MA + MB) 034509 AB
PDap = 0.00185834 /13 i + i ;
AB =T MA MB PUiBQ@,AB

where the variables are in the conventional units previously described. The values for the collision

integral for diffusivity can be found in Tables E1 and E2 of BSL

OAB =

oa+op
2

€AB = \/EAEB
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5.5 Mass Average and Molar Average Velocity

e When we state v;, or the velocity of species 7, this is not the velocity of an individual molecule of i.
Instead, it is the mean of all the velocities of molecules of species i. In essence,

N N
7= Zim il o
Zilil Pi ZZ:;W

is the mass average velocity

e The molar average velocity is given as

j Zz lcl i al
Zz 16 g

5.6 Summary of Mass and Molar Fluxes

e As stated earlier, Fick’s Law states that the mass flux is
—
Ja=—pPapVwa

e This can be stated as
=
JA = *C.@ABV{EA

where this is now the mole flux

e The combined mass flux for one species is
e The combined molar flux for one species is

e The mass flux for N species is

e The molar flux for N species is

= — al
le = NA —TA Z ﬁz
i=1
e For a binary system with one-dimensional diffusion,

ox
Na,. = _C@ABT; +24(Na,+ Np,.)

6 Concentration Distributions in Solids and in Laminar Flows

6.1 Shell Mass Balances and Boundary Conditions

e The molar flux can be related to the concentration gradient by

Nap=—cDspVra+za (NA—FNB)‘

— Note that V is acting as a gradient here since x 4 is a scalar
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e For small x4, the right-hand term drops out, and implementing

cA
c

Tgq =

yields
Nao=—-%4BVca

when z 4 is small. This is frequently encountered at surfaces.

e In words, the shell mass balance states “rate of mass of A in minus rate of mass of A out plus rate of
production of mass of A by homogeneous reaction equals zero”

e The boundary conditions include:

— The concentration at a surface can be specified (e.g. x4 = za0)
— The mass flux at a surface can be specifies (e.g. Na = Nag)

— If diffusion occurs in a solid, N4g = k. (cao — cap) may apply, where N, is the molar flux at the
surface, c4q is the surface concentration, ¢y is the concentration in the bulk fluid stream, and k.
is the mass transfer coefficient

— The rate of chemical reaction at a surface can be specified. For an n-th order reaction, N4g = k.c’},
may apply

6.2 Diffusion Through a Stagnant Gas Film

Problem: Consider the schematic shown below. Note that B is immiscible with A, so while B can be present
in the system at steady state, there is no net flux of B down or out, just across such that Ng_, = 0. For the
full description of the problem, see Section 18.2 of BSL.

Gas stream of A and B
_

z=zZ

1.0
l’TB

Z

>
N
1

]
—
/IA+XB=

N
]
n
1| s

- Liquid A & 5
- 2
— -—3
1. We write the mass balance in the z direction as
dxr
Nap.=—cPap—— +x4Na,.
dz
2. Solving for N4, yields
_C@AB dl‘A
N, = A28
1—z4 dz
3. A steady-state mass balance can be written as
SNa.|, — SNA,Z|Z+AZ =0

where S is a cross-sectional area
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4. Dividing by SAz and letting Az — 0 yields

_dNAz

=0
dz
5. This can therefore be written as
i C@AB dLEA -0
dz\1—xz4 dz )

(a) For an ideal gas mixture, ¢ is constant for a constant T and P. Also, for gases, Z4p is usually
independent of the composition such that

i 1 d:L’A -0
dz \1—xz4 dz

which can be integrated to yield®
—In(1—-2z4)=Ciz+Cy
6. Although this is not obvious, we can let C; = —In K; and Cy = — In K such that”
1—z4=K{K,
7. The boundary conditions are: x(z1) =41 and z4(22) = Ta2
8. Applying the boundary conditions yields 1 — x4 = K{'Ky and 1 — 242 = K;2K5, which can be

combined to yield

1-— T A2
— Z2—2Z1

1 =K
— TA1

(a) A little algebraic manipulation yields

1 _ 1/(Z2—Z1)
- (222)
1—za1
(b) We need an expression for Ko, so
1— 21/(z2—21) 1— —z1/(22—21)
1—.’17A1: & K2—>K2:(1_$A1) ﬂ
1—z4 1—za1
9. Plugging in the results for K7 and K» yields

_ z/(z2—21) _ —z1/(22—21)
1“(1“2> (1“1)(1 m)

1—xa1

which can be rearranged to

l—z4 (1 _ xA2>(Z_Zl)/(22_Zl)

1713,41 1756141

10. To obtain the profile for x g, recognize that z4 +xp =1

1
6Note that a useful integral for these types of problems is J dr = —In|az + b|
azr a
7Generally speaking, for an equation of the form aln (1 4 bz 4) = C1z+C2, you want to make C1 = aln K1 and C2 = aln Ka.

From this, the final equation will be of the form 1+ bx 4 = K7 K>.
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11. Now, if the average concentration of B is desired,

zZ
f *rpdz
g = ekt M
Z2
. dz
SO
fzz 2B dz
TB 1\ rp1
B _ -
TB1 Zf dz

12. Define the non-dimensional height variable £ = ! , such that dz = (22 — 21) d§ and
Z9 — 21

3
1({ TB
@_IO (m) o

B Jo ¢
13. The integral table states that [a” dz = e’ SO
nx
1
()
s _ \Tm1
TB1 (m)
TB1/ |,
which yields
_ _ TB2— Bl _
Tp=—7—< = (B)n
B2
In|{ —
()

14. The rate of evaporation is the rate of mass transfer at the liquid-gas interface and can be found by

calculating N4 . at z = z;. Therefore,

Nl cDap dxa cYDap drp
A, = —-—— = _—
Fla 1—x41 dz - rp1 dz o

(a) Implementing the dimensionless length,
g o C@AB d($3/$31)€

C@AB d:L‘B
rB1 df £=0 dz zZ9 — 21 df £=0
15. The final expression is
cDaB rp2 cD4B
N z = 1 —_— = V— _
Azl Y — 2 L <$131> (22— 1) @By, (Ta1 — T 42)

(a) This expression can be used to find the diffusivity constant of an evaporating substance

16. For diffusion with a moving interface, see Example 18.2-1 in BSL
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6.3 Diffusion through a Spherical Film

Problem: Consider diffusion through a spherical shell with radii 7y and ro where ry < r < ry. For the full
problem statement, see Example 18.2-3.

1. The shell balance states that in the r direction states that
Nadmr?| — Nadmr®| =0

which can be rewritten as p
o (r’Na) =0

2. We can state that Np, = 0 since B is insoluble in A. Therefore,

dx
Na,= *C@ABT;‘ + 24Ny,

which can be solved for N4 , as
C@AB d:EA

Npo,=— —
Ar 1—x4 dr

3. Therefore,

d (12 Dan dia
dr 1—xz4 dr

4. Integrating this yields
C
—In(l—za)=—+Cy
r

5. Let C;1 = —In K7 and Cy = —In K5 such that
1—a4=K/"K,

6. As in the previous subsection, this comes out to

1- TA o (1 — JCA2>(1/T1_1/T)/(1/7"1—1/r2)

1-— T A1 1-— T Al
when the boundary conditions are applied

7. The molar flow can be found as

_ 2
WA - 47TT1NA,T o 1 1 1 —ra

T1 T2

47TC@AB <1—.%‘A2)
= In

which is applicable for any spherical surface of radius r between r; and 79
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6.4 Diffusion with a Heterogeneous Chemical Reaction (e.g. Gas Reacting on
Solid Catalyst)

6.4.1 Diffusion with an Instantaneous Heterogeneous Reaction

Problem: Consider the heterogeneous chemical reaction of 24 — B shown in the diagram below. For the
full problem statement, see Section 18.3 in BSL.

Edge of hypothetical
/ stagnant gas film

IZ ______________

Catalytic surface
where 2A — B
irreversibly and
T B instantaneously

AT R T T T R AT |

2. We also know that

1
Np,=—cDap+ 4 (NA,Z — 2NA,2)

which simplifies to
C@AB d.%'A

Ny, =——"3——=
4, 1—%1‘14 dz

3. The shell mass balance states that

SNa.|, — SNA12|Z+AZ =0
which leads to
dNa. 0
dz

4. This yields

i C@AB da:A -0
dz 1—%@4 dz )

—21n <1 — ;IA> = Clz+C'2

5. Integrating this yields

for constant cZ4p

6. Substituting C; = —21In K; and Cy = —21n K5 yields

1-%“:}(51(2

7. The boundary conditions are £ 4(0) = x40 and z4(d) =0

b
8For a reaction aA — bB, Np,.=——Na_.
a
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8.

9.

Applying the boundary conditions yields

1 1 1—2/8
1— if.UA = <1 — 2IA0>

d
To get the molar flux, we need ﬂ. Since we want the molar flux at the film, and the film is at z = 0,

z
d
we technically want % . The final result yields® sof
Z z2=0
2¢9 1
Na.== ABIH( I >
d 1-— §$A0

6.4.2 Diffusion with a Slow Heterogeneous Reaction

Problem: Attempt the previous problem with a slow reaction (i.e. not instantaneous). Assume that the rate
A disappears at the catalyst surface is given as N4 , = k{ca = k{cx 4, in which k{' is a rate constant for the
pseudo-first-order surface reaction. For the full problem statement, see Example 18.3-1 in BSL.

1.

A,z

7 instead of
Te

The set-up is identical up until the boundary conditions at which point x4 (J) =
T A (5) =0

Applying the boundary conditions yields

1 1NA z/d 1 1-2z/6
1— =gy ) = (1- =24 1— -
( 2“) ( 2 k;'c> 9T A0

and solving for N4 . yields,
z=0

d
Evaluating ara
dz

1 _ 1 Na, -
QC@AB 2 ke

NA z = In 1
’ 1) 1— 51‘,40

If k7 is large (note that this means the reaction is fast, but not so fast that it is instantaneous) then

Ny, = 2c74p/0 In (1 1 )

0N:] _1

which can be obtained by a Taylor expansion on the logarithm term and keeping just the first term
such that In (1 + p) = p for small p

The Damkohler Number of the second order can be defined as

_ kY

Dall
DaB

(a) In the limit of Da!l — oo, we obtain the expression for the instantaneous reaction

(b) In words, the Damkohler number is the ratio of the chemical reaction rate compared to the
diffusion rate (i.e. mass transfer)

(¢) A very fast reaction is governed by mass transfer, but a very slow reaction is governed by kinetics

d
9The following is a helpful identity: o (abgc) = bab® In (a)
T
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6.5 Diffusion with a Homogeneous Chemical Reaction (e.g. Gas Dissolving in
Liquid)

Problem: Consider a gas A diffusing into a liquid B. As it diffuses, the reaction A+ B — AB occurs. You
can ignore the small amount of AB that is present (this is the pseudobinary assumption).

Ca0

1. Note that the reaction rate can be given as k{’c4 if we assume pseudo-first order. This makes the shell
mass balance

SNa:|, = SNa:|, n. — ki caSA2=0
2. This can be rewritten as N
A,z "
“d +kica=0

3. If the concentration of A is small (i.e. dilute), then we can state that x4 goes to zero in

d.
Ng, = _C@ABL; +24(Na,+ Np.)

d
such that p
Na.= _QAB%
z
4. Combining this with the equation in step 2 yields
d’c
@ABW; - ki”CA = 0
d
5. The boundary conditions are ca4(0) = cao and Na (L) = % = 0 . The first boundary condition

states that the concentration of A at the surface is fixed. The second boundary condition states that
no A diffuses through the bottom of the container.

2
6. Multiply the equation in Step 4 by for later simplicity. This yields
ca0ZAB

L2 dch k/l/lCAL2 —0

cao dz?  caoPam

7. Let’s define the dimensionless variable known as the Thiele modulus:

=4/ k‘llﬁLQ/.@AB

8. Let’s also define the dimensionless length

"~
I
I

such that
dz = Ld¢
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9. The concentration ratio ca be defined as

r="°
CA0
10. Using these variables,
d*r 9

11. The general solution is given as

T' = C} cosh (¢€) + C, sinh (¢%)

since , .
cosh (p) = ete”
2
and ) .
e —e”
inh =
sinh (p) 5
" dr’ )
12. The boundary conditions are at £ =0, ca = cag, s0 I' =1 and & =1, dif = 0. Applying boundary
condition,
1= Cycosh(0)+ Cysinh (0) = C; =1
and
dr )
i ¢ sinh (¢€) + Ca¢ cosh (¢)

and invoking the second boundary condition yields

0= ¢sinh ¢ + Cy¢pcosh¢p — Cy = —tanh ¢

13. This yields
I’ = cosh (¢€) — tanh (¢) sinh (¢¢)

which can be rearranged to'°

r— cosh (¢) cosh (¢€) — sinh (¢) sinh (p€) _ cosh [¢ (1 — &)]
cosh (¢) cosh ¢

14. Reverting to the original notation yields,

y o VT (1)

e cosh (v/i L2/

15. The average concentration in the liquid phase can be given by

[ELA g,
ca _ 0 ¢ca0 _ tanh¢
CA0 fOL dz o
16. The molar flux at the surface is
dca ca0ZaB
Naalo=— 2ap%4] = ( ptanh (¢)
0 dz |,_, L

10Note that cosh (x % y) = cosh x coshy £ sinh 2 sinh y and sinh (z & y) = sinh  coshy & cosh zsinh y
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6.6 Gas Absorption with Chemical Reaction in Agitated Tank

Problem: Consider the diagram shown below. Assume that each gas bubble is surround by a stagnant liquid
film of thickness §,which is small compared to the bubble diameter. Assume a quasi-steady concentration
profile is quickly established in the liquid film after the bubble is formed. The gas A is only sparingly soluble
in the liquid, so we can neglect the convection term. The liquid outside the stagnant film is at concentration
cas and is constant. Even though this is a spherical bubble, it is a thin shell, so you can treat it as a slab.
For the full problem statement, see Example 18.4-1 in BSL.

] o
L Volume of liquid

iquid B phase is V

O
o Surface area
of all the
o) O bubbles is S

Gas A in

1. The setup is the same as before, but the boundary conditions are at z = 0, £ = 0,c4 = cq0, I' = 1,

C
and at z =0, =1, cqy = cas, I = B if we state that B = O—A&. Note that the dimensionless length
A0

should be redefined accordingly as £ = % and the Thiele modulus is redefined as ¢ = \/k;" 02/ %ap

2. From the previous problem,

I' = C4 cosh (¢€) + Cy sinh (¢€)

3. Applying boundary condition 1 yields

C;=1
4. Applying boundary conditions 2 yields
B — cosh ¢
R
5. This means
I = cosh (¢€) + D=2 G (g¢) — S cosh (96) + (B — cosh 9) sinh (96)

sinh ¢ sinh ¢

6. Now equate A entering the liquid at z = § to amount consumed in bulk:

d 1"
—S@AB% :Vkl CAS
2 =5

de
7. We need the d—A term. This can be rewritten as
2 |2=5

dCA - dCA%_ dCAl

dz  df dz dE 6
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8. Therefore,
dea
dz

_ Cao $sinh? ¢ — ¢ cosh? ¢ + B¢ cosh ¢
5 ( sinh ¢ )

z=0
using the identity cosh z? — sinh 22 = 1 yields

_cao (Bocoshp — ¢
5_5( sinh ¢ )

dea
dz

z=

9. So,
cA0 (B¢cosh¢—¢> m

—5a8 5 sinh ¢ = Vhi cas

10. This can be solved for B as 1

Vo .
cosh ¢ + §¢ sinh ¢

B =

11. The total rate of absorption is

o Ny, )
N=4 |Z:O = — ¢ cosh ¢ — 1V -
ca09aB sinh ¢ cosh ¢ + g5¢sinh ¢

which is plotted in Figure 18.4-4 of BSL

6.7 Diffusion into a Falling Liquid Film (Gas Absorption)

Problem: Consider the absorption of A into a falling film of liquid B. For the full problem, see Section 18.5
in BSL.

v(x)

€0

1. The velocity profile is found from Transport I as

v (T) = Vmaa [1 - (?)2]

2. The concentration will change in the x and z direction, so
Naz|, WAz — Na|,  a, WAZ + Nag|, WAZ2 = Nagl, 2, WA2=0

at steady state
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10.

11.

This then yields

ONs, ONag
) ) — 0
0z + ox
We now want expressions for the molar mass flux:
Oca
Na.= —-@ABE +24(Na:.+ Np,2)

which reduces to the following because the transport of A in the z direction will be primarily by
convection (not diffusion)
NA,z =TA (NA,Z + NB,z) N CAVz (.Z')

and in the z direction we have

aCA
Naz=—Dap——
0z
since there is mostly diffusion in the x direction (not convection)
Therefore,
80,4 52CA
V,—— = —-—
70z AB a2
Inserting the velocity component yields

x\2] dca 0%ca
Vz max [1 - (5) ] g = @ABW

.. Jdc .
The boundary conditions are: at z =0, c4 = 0 and x = 0,c4 = ca09 and x = 4, 24 0 since there

x
is pure B at the top, the liquid-gas interface is determined by the solubility of A in B, and A can’t
diffuse through the wall

We shall use the limiting case of the Penetration Model, which states that there is only penetration in
the outer layers of the film such that v, & v, ;mqz. This means,

aCA 826A
v p— = AB—=——F
z,max 92 81'2

and the third boundary condition is changed to at z = 00, c4 =0

This looks like a semi-infinite solid problem, so

CA X
— =1—erf
CA0 AV 49ABZ/vz,maz

The local mass flux at the gas-liquid interface may be found by

aCA

N o -@ABUmaw
A,z|$:0 = —@AB% —_—

Tz

z=0

The total molar flow across the surface at z = 0 is

w L
19
Wa :/ / Nal,_y dzdy = WLeag| —2E20mes
o Jo a mL
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6.8 Gas Absorption from Rising Bubbles

Problem: Estimate the rate at which gas bubbles of A are absorbed by liquid B as the gas bubbles rise at
their terminal velocity, v;, through a clean quiescent liquid. See Example 18.5-1 in BSL for more information.

e The molar absorption rate is
49 sBuy
D
and is applicable for potential flow and for gas bubbles between 0.3 cm and 0.5 cm

(Na) gug = €40

e For creeping flow around the bubble,

4@,43’[&

(Na)gug = Ca0 3D

6.9 Diffusion into a Falling Liquid Film (Solid Dissolution)
Problem: See Section 18.6 in BSL for the full problem statement.

e 5 —
Near wall V Parlabgt]}irc
veloci
L= (pg§) ¥ profile of
o fluid B
Insoluble
1 wall
Y
Slightly soluble

wall made of A

¢ 40 = Saturation
concentration

1. The velocity profile can be obtained from Transport I as
2 2 2 2 2
v, = P9 1_(1_9) _ P9o” 2(y> _<y)
24 1) 24 1) )
for the case where cosf=1landx =0 —y
2. To make the equation simpler, we can state that (y> < %,

_ P9oy _
n

vy ay

since
pgo

o=
I

3. The boundary conditions are at z=0,c4 =0and y =0, c4 =cao and y =00, cq4 =0
4. Define the combination variable of

fln) =2

CA0

1/3
_ a
n=y (9@,4325)

40

where




5. The partial differential equation is

d? d
7f =+ 3n2l _

dn? dn 0

6. This solution is tabulated as

n
f=0 / exp (—7°) dif + Cs
0

7. It turns out that - o
ca _ Sy oo () dn [ e ()
cao [ exp (—3)° diy I (3)

8. The local mass flux at the wall can be obtained as follows

BcA

d [c 1o}
NA,y|y:0 = _QABaiy . = — PaBCao Lln <cj0> 82]
y:

y=0

= — P4BCa0

_eXp(773)( a )1/3 _@ABCA0< a )1/3

T (4) 9.@,432 o T (4) 9@,432
3 =0 3

9. Therefore the molar flow of A across the surface is
W L 1/3
2 L
Wy = / / Nay|  dzdz = 22aBCAW ( a >
o Jo (7> 99apL
y=0 T 3

6.10 Diffusion and Chemical Reaction Inside a Porous Catalyst

Problem: We shall describe diffusion within a porous catalyst pellet. We shall describe an effective diffusivity,
which is an averaged quantity. Consider a pellet of radius R that is submerged in gaseous reactant A and
gaseous product B. Species A diffuses inside the catalyst and is converted to B on the surface. For the full
problem statement, see Section 18.7 of BSL.

1. The mass balance states that
NA7T47T’I‘2|T - NAv’”47TT2}r+Ar + Radmr®Ar =0

where the rightmost term is the molar rate of production of A by chemical reaction in the shell of
thickness Ar

2. This translates to d
% (’I“QNAJ) = TQRA

3. The effective diffusivity is

dea
gy

1d odca _
Tett 3 g ( d) =

NA,r = _96

4. Therefore,

for constant Py

5. The boundary conditions are c4 = car at » = R and c4 = finite at r =0
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10.

11.

12.

13.

14.

A change of variables can be implemented to yield
2 (Ka),
dr2  \ Desy

¢ C ki a C ki a
oA cosh | r L + “Zsinh | r L
CAR T geff r @eff

This has the solution of

Using the boundary conditions yields

The molar flow at the surface r = R is

WAR = 47TR2NAR = _47TR296ffW

Evaluating the derivative and plugging it in yields

"

k k//
War =47 R%Pesscar |1 — R 19 coth | R 19
Des Deyy

The best possible scenario is if every element’s surface is exposed such that c4 = car and then
4 "
WAR,O = —gﬂ'RSak’l CAR

The efficiency factor is defined as

War 3
= = — (¢ coth -1
M= G = 55 (6ot ()~ 1)
k”
where ¢ is once the Thiele modulus of ¢ = R @1 ? | Note that this Thiele modulus has a different
eff
functional form.
3
(a) For ¢ =10, coth ~ 1, so for large ¢, ns =~ p;

For a nonspherical particle,

Rnonsphcrc =3 (SP)

where Vp is the volume and Sp is the external surface

The conversion rate is then
1"
|War| = Vpaky, carna

for nonspherical particles where

1
and the generalized modulus is defined as
A= &V Ve [k
R Sp Sp -@eff
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7 Equations of Change for Multicomponent Systems

7.1 The Equations of Continuity for a Multicomponent Mixture

e The microscopic mass balance states that

W (7 pu) (V- Ta) 7

e The continuity equation for the mixture is

Ip

ot *(V'Pﬁ)

and at steady-state conditions with constant density,
V-7 =0

e The molar equation of continuity states that

Oco _ _ (V-No)+R

ot

7.2 Summary of the Multicomponent Equations of Change

e For a binary system with constant pZap,

0
( gtA + (V- VUJA)) = pDapV3wa +124

— For a system also at steady-state, you can divide by the molar mass, M4, to get

’7 -Vey = .@ABV2CA +7ra ‘

e For a binary system with constant cZ4p,

0
( gtA (7 VSUA)> ZC.@ABVZ.%‘A—F(,TBRA—CEARB)

e For binary systems with zero velocity and no chemical reaction, Fick’s Law states that

aCA - 9
at = @ABV CcA

7.3 Simultaneous Diffusion, Convection, and Reaction with a Porous Plug

Problem: See Example 19.1-1 in BSL.

1. We can use the equation for binary systems with constant pZ4p,

Owq
( ; + (- Vwa)) = pPapV3wa +14

2. We can set the time-derivative term equal to zero since it is at steady-state. We can also divide by
M, (the molecular mass) to get
dea

d CA 22
’UOT = 9‘43 kl CA
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3. Dividing by Z4p yields

d?ch vg dca kq

dz? Dap dz DaB “a

4. Set the boundary conditions as ¢4 = c4g at z = 0 since nothing has reacted the inlet and c4 = 0 at
z = oo when it has all reacted

5. The final solution is tabulated as

ca V92 4k, Dap
LA _ exp 1— )14 L1 7AB
Ao 2948 v3

7.4 Concentration Profile in Tubular Reactors

Problem: See Example 19.4-2 in BSL.

1. We can use the equation for binary systems with constant pZ4p,

Owq
p ((;5 + (V- Vwa)) = pPapV3wa +14

2. The system is at steady-state, so the time-derivative term goes to zero. We can also ignore r4 for
reasons I do not completely understand. Therefore,

2
UZ%ZQAB {1 0 ( 8CA> +8 CA:|

0z ror " Or 072

3. We can ignore the axial diffusion compared to the axial convection,

0,24 _ g 110 ([ %a
9, APV or or

Uz = Uz maz (1 - (;)2>

5. Plugging this expression for v, into our differential equation yields

r\2\ dca 10 Odca
Yz,maz <1 B (E) ) 0z Pap [T or (T or )]

6. The boundary conditions are cy = ca9 at z =0, c4 =0 at r = R, and ¢4 = finite at r =0

4. The velocity profile is given as

7. We can define y = R — r such that the second boundary condition becomes c4 = 0 at y = 0 and the
third boundary condition becomes c4 = finite and at y = oo

8. This allows us to rewrite our expression as
y Oca 0%cy

2 z;mar 5 o
Vaimazp 75, AB Oy?

9. One can find that the solution to this expression

ca _ Jo e (=7°) dn

where




8 Concentration Distributiuons with More than One Independent

Variable

8.1 Time-Dependent Diffusion
8.1.1 Gas Adsorption with Rapid Reaction
Problem: See Example 20.1-2 in BSL.

1. The concentration profiles can be described as

8cA - 620A

ERR =
for 0 < z < zp(t) and

803 - 8263

ERRar=s

for zp(t) <z < oo

2. The initial conditions state that at ¢ = 0, cg = ¢, and c4 = 0 for all z > 0. The boundary conditions

1
are at z = 0, ¢4 = ca9. At z = zg(t), ca = cg = 0. At z = zg(t), _E@AS

Z =00, CB = CBxo

z CA
3. If we define n = and ¢ = —— so that
K V4Dt CA0
d’¢ d
— +2n— =0
dn? * de
4. Let ¢ = ¢ so that
dn
dy dyp

dn

5. From this, we can state that

*+277¢:0_>?:_277d71_”/f:

1 !’ n
p=C +C / exp (—7%) dij
0
6. Try
CA z
— = C1 + Cherf | ———
CAQ ! 2t (\/4@,4525)
and
CB z
= (5 + Cyerf
CBxo 3 4 < 4.@3315
7. Applying the boundary conditions yields
erf (Z>
cA —1_ V4D 5t
CA0 ( ZR >
erf | ——
VAD st
erf < i )
CB —1_ 49Dt
CBoo ZR
erf | ——
<\/4@Bst)
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8. The mass transfer at the interface is then

(3'CA

Nao = —%as 5,

z=0 erf( —97 ) i
AS

9. The average rate of absorption up to time ¢ is then

2ca0 Das

1 t
NAZO,avg = */ NAzodt =
t /o erf< v ) it
\ Das

8.1.2 Mass Transfer at an Interface with a Semi-Infinite Body

= 2]\/vAzO

Problem: See Example 20.1-4 in BSL.

1. It will simply be stated that

2. At the interface,

2 du

d.. — 2
(a) Note that Eelf(u) = ﬁexp( u?) P

8.2 Diffusion and Chemical Reaction in Isothermal Laminar Flow Along a Sol-
uble Flat Plate

Problem: See Example 20.2-1 in BSL.

e The velocity boundary layer thickness can be described by

5= /122%
Voo
e The Schmidt number can be expressed as
1 4 d k. ¢l
= Za AL AL 12| 2n A0 T A2
Sc ~ 3%dx tant (n+1)vog
where 5
A==
)
e For no reaction,
S =A

for A<1

e For a slow reaction,
1
ArSct/3 -2
© 77
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8.3 Taylor Dispersions
Problem: See Section 20.5 in BSL.

1. It will simply be stated that the axial dispersion coefficient is defined as

R?(v)* 1 2
=—=— P
180, 18 248Peas
where
Pe = ReSc

2. The modified expression that holds for more values of Z4pt/ R? is

R2<’UZ>2

K=9 _—
'AB + 187 ap

1
= Dan (1 + 48Pe?43>

8.4 Unsteady-State Interphase Diffusion
Problem: See Problem 20.D.2 in BSL.

1. Tt will simply be stated that the concentration profiles can be given by

z
1 f| —
a-¢ 7 ()

¢y —mey m+ D1/ Do

and

2
1 —erf| ——
c2—¢y “ (\/4%1?)

1

S—3/m 1m+ /DD

where m is Henry’s law constant (i.e. the “distribution coefficient”)

Nl _ c5 —mcy | 7
Az|z=0 m 4+ @1/@2 7t

9 Interphase Transport in Nonisothermal Mixtures

2. The flux at the interface is

9.1 Rotating Disks

e The molar flux at the surface can be given by

22/301/2
Nao=0.620cs | —2B—— | |= k2, Aca
176 .

where  is in rad/s

e The mean Sherwood number can be given by

_ k° D .
Sh = 2™~ — 0.620Re'/?Sc!/3
DaB
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e The Reynolds number is expressed in this case as

vL D?%Q
Re=— =
v v
e To relate the mole fraction to concentration,
o = TP
' > wiM;

where p is the density of the mixture

9.2 Correlation of Binary Transfer Coefficients in One Phase

e For forced convection around a sphere,

Sh = 2 + 0.60Re'/2Sc!/?

e Many of the heat transfer expressions we found earlier can be used for mass transfer analogues by
replacing the Nusselt number with the Sherwood number and replacing the Prandtl number with the
Schmidt number

9.3 Interaction of Phase Resistances (i.e. Leeching)

Problem: See Example 22.4-2 in BSL.

e It will simply be stated that

Ma(t >
1 10 =6 Bnexp (—A2%2apt/R?)
§7rR3c0 n=1

e For infinite k. or N,

and

e For finite k. or N,
Ancot(A\,) —(1=N)=0
and
_N? sin? (\,)

B, = ~—
A3 A, —sin (A,) cos (Ay)
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10 Appendix

10.1 Gradient
of . of. .  Of

Vf= e + a—yy + 5.7 (Cartesian)
08, 105, 0
Vf= o + - 899 + 55 (Cylindrical)

of . 10f, 1 of, )
o 7‘890 rsin987¢¢(8phencal)

10.2 Divergence

Ov, Ovy Ov,
V- = Or + oy 0z

(Cartesian)

10 10vg Ov,
Vo= g )t e T,

(Cylindrical)

1
0 (v sin6) + F% (Spherical)

10 ,,
Vo= g () Y e 0 90

72 Or

10.3 Curl
v x 7 _ ((’)vz B 8’Uy) P (avw _ 87}2) i+ (81}1/ _ 8’0‘7”) Q(Cartesian)

dy 0z 0z Ox ox oy

B 18112 % . Oov,  0v, )\ A 1 0 (rvg) % R Lo
Vx?-(r 50 82)7‘4—(82 - 8r>9+r<3r - a0>z(Cyhndrlceml)

1 d(vgsind) vy . 1 v, 19(rvg)\ ;5 1 (9(ve) v - .
V= ( 00 8¢)T+<rsin9 o6 1 Or 9+r or 20 ¢ (Spherical)

10.4 Laplacian
0*f  0%f O%*f

0, Of O*f O°f .
Vef= 922 + PYE + 522 (Cartesian)

Vif = L9 < 8f> + iﬁ + ﬁ (Cylindrical)

ror\"or) T 2007 T 022
2p_ 10 (50f L0 (ne?d\ L _&F ‘
vii= r2or \\ or * 2506000 \" b 00 * 2 sin” § Op? (Spherical)
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