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1 Temperature Distributions with More Than One Independent
Variable

1.1 The Microscopic Energy Balance
• The microscopic energy balance states that

ρĈp

[
∂T

∂t
+ v · ∇T

]
= −∇ · q

where v and q are vector quantities

• In the limit of no convection and applying Fourier’s law,

ρĈp
∂T

∂t
= (∇ · k∇T )

where Fourier’s law is
q = −k∇T

– This can be occasionally rewritten as q = k
∆T

L

• Occasionally, k can be assumed to be independent of temperature, which then makes the energy balance

∂T

∂t
= α∇2T

where α is the thermal diffusivity defined as

α =
k

ρĈP

– The units of α are length-squared per unit time

∗ The units of k are frequently watts per meter-kelvin=

• The heat flow is given as

Q =

ˆ
A

q dA

which simplifies to the following if q is assumed to be uniform over the area (e.g. if you use an average
heat transfer coefficient, h̄ to find q)

Q = qA = −Ak∇T

• The energy over a period of time can be given by

E = A

ˆ t

0

q dt

1.2 Unsteady State Heat Conduction: Separation of Variables Technique
Before I begin this section, I’d like to point out that Section 1.2 is not explore in full rigor, and you are not
advised to try to understand the poor explanations I’ve included here. The takeaway points are how to use
the technique of separation of variables and that we add the unsteady state term to the steady state term
to get a true equation for the temperature profile.

Problem: Consider a rod of length `, initially at T0, that is perfectly insulated except at the ends (such
that there is 1-D flow of temperature). Find the steady-state temperature profile if the left side is held at a
constant TL and the right side at a constant TR
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1.2.1 Introduction

1. Since we are not worrying about radial temperature, we shall use Cartesian coordinates

2. The boundary and initial conditions are

T (0, t) = TL

T (`, t) = TR

T (x, 0) = T0

3. Try a solution of
T (x, t) = X (x) T̂ (t)

4. The microscopic energy balance is
∂T

∂t
= α

∂2T

∂x2

5. Therefore, plugging in the trial solution yields

XT̂ ′ = αT̂X ′′

which can be rewritten as
T̂ ′

T̂
= α

X ′′

X
= Constant

6. Now, we analyze the possible conditions

(a) If the expression equals zero, it is the steady-state solution

(b) If the expression equals a positive quantity, then the temperature would increase up to (positive
or negative) infinity, so it is unphysical. This is shown below (where C2 is some arbitrary positive
constant):

T̂ ′

T̂
= C2 → 1

T̂

dT̂

dt
= C2

now rewriting this (temporarily) using the differential operator D yields

DT̂ − C2T̂ = 0→ T̂
(
D − C2

)
= 0

which has roots of
D = C2

such that the solution to the ODE is

T̂ = C1 exp
(
C2t

)
which approaches infinity if C1 is positive and negative infinity if C1 is negative

(c) If the expression equals a negative quantity, then the temperature would be something that’s
feasible. The same mathematical progression would show that for a negative constant (−C2):

T̂ = C1 exp
(
−C2t

)
which decays to zero at infinite time. Since t→∞ is steady-state, the T̂ (t) term should drop out
(i.e. the transient term goes to zero), which it does. Therefore, a negative constant value is the
unsteady state solution

7. Let’s tackle this problem by addressing the steady-state solution, then the unsteady state solution, and
finally adding them together
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1.2.2 The Steady State Solution

1. If the expression equals zero (the steady state solution), then we can evaluate this as follows:

T̂ ′

T̂
= 0→ T̂ = C1

α
X ′′

X
= 0→ X = C2X + C3

such that
T (x, t) = C1 (C2X + C3)

and creating a new constant will yield

T (x, t) = C4X + C5

which can be solved using the boundary and initial conditions to yield

T (0, t) = TL = C5

T (`, t) = TR = C4`+ C5

so for the steady-state solution to heat conduction in a rod that is perfectly insulated except at the
ends:

T (x, t) =

(
TR − TL

`

)
x+ TL

1.2.3 The Transient Solution (both steady and unsteady state)

1. If the expression equals a negative constant (i.e. −C2), let’s try the differential equation of

X ′′

X
= −C2

Rewriting this (temporarily) using the D differential operator yields

D2X + C2X = 0→ X
(
D2 + C2

)
= 0

which has roots of
D = ±

√
−C2 = ±i

√
C2 = ±iC

such that the solution of the ODE is

X = C1,x,i cos (Cx) + C2,x,i sin (Cx)

2. Let’s now try the other differential equation for a negative constant,

T̂ ′

T̂
= −C2

which can be solved, as earlier with C2, to yield

T̂ = C3,x exp
(
−C2αt

)
3. Finally, we can write the solution as

T = XT̂ = C3,x exp
(
−C2αt

)
[C1,x,i cos (Cx) + C2,x,i sin (Cx)]

which can be rewritten absorbing C3,x into the other constants to yield

Tuss = exp
(
−C2αt

)
[C1,x cos (Cx) + C2,x sin (Cx)]
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4. Since we defined the problem to be at steady state at x = 0 and x = `, it is clear that Tuss = 0 at
these values. Therefore, C1,x = 0 and C2,x = exp

(
−C2αt

)
B sin (C`)

5. Since we just stated that Tuss = 0 at x = `, we have an issue. We can have B = 0, but that means
Tuss = 0 for all x and t. Clearly that’s not possible. There are no parameters to alter in exp

(
−C2αt

)
either. This leaves us with forcing the sin (C`) term to zero. To do this, we can state that Cn =

nπ

`
where n is an integer greater than or equal to 1. Rewriting our expression for the unsteady state

temperature yields Tuss = exp

(
−n

2π2αt

`2

)
Bn sin

(nπx
`

)
6. After a lot of math and applying the half-range sine expansion in addition to the initial conditions, we

find that for the case of TR = 100, TL = 50, and T (x, 0) = 100 that Bn =
100

nπ
and

T (x, `) = 50
(x
`

+ 1
)

+
100

π

∞∑
n=1

[
1

n
sin
(nπx

`

)
exp

(
−π2n2αt

`2

)]
for both steady and unsteady state

1.3 Heating a Semi-Infinite Solid
Problem: Consider a solid material occupying the space from y = 0 to y =∞ that is initially at temperature
T0. At time t = 0, the surface at y = 0 is suddenly raised to temperature T1 and maintained at that
temperature for t > 0. Find the time-dependent temperature profiles T (y, t). Assume a constant k.

Solution:

1. The microscopic energy balance in the y direction states that

∂T

∂t
= α

∂2T

∂y2

2. We can introduce a dimensionless variable of

Θ =
T − T0

T1 − T0

to simplify the calculations such that
∂Θ

∂t
= α

∂2Θ

∂y

3. The boundary and initial conditions state that:

Θ (y, 0) = 0

Θ (0, t) = 1

Θ (∞, t) = 0

4. Since Θ is dimensionless, it must be related to
y√
αt

since this (or multiplicative scale factors of it) is

the only possible dimensionless group from the given variables. Therefore,

Θ = Θ (η)

where
η =

y√
4αt

(a) The
√

4 term in the denominator is included for mathematical simplicity during the derivation
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5. The differential equation in Step 2 can be broken down from a PDE to an ODE

(a) First,
∂Θ

∂t
=
∂Θ

∂η

∂η

∂t

The value for
∂η

∂t
can be found from taking the derivative of η with respect to t. This yields

∂Θ

∂t
= −dΘ

dη

1

2

η

t

(b) Next,
∂Θ

∂y
=
∂Θ

∂η

∂η

∂y

The value for
∂η

∂y
can be found from taking the derivative of η with respect to y. This yields

∂Θ

∂y
=
dΘ

dη

1√
4αt

i. We want
∂2Θ

∂y2
though, so

∂2Θ

∂y2
=

∂

∂y

(
∂Θ

∂y

)
=
d2Θ

dη2

1

4αt

(c) Therefore,
d2Θ

dη2
+ 2η

dΘ

dη
= 0

6. A new set of boundary conditions are needed for η

(a) At η = 0, Θ = 1 since this is when y = 0, and it was stated earlier that Θ(0, t) = 1

(b) At η =∞, Θ = 0 since this is when y =∞, and it was stated earlier that Θ(∞, t) = 0

7. To solve this differential equation, introduce ψ =
dΘ

dη
to make the equation

dψ

dη
+ 2ηψ = 0

(a) This yields,
ψ = C1 exp

(
−η2

)
8. Integrating ψ yields,

Θ = C1

ˆ η

0

exp
(
−η̄2

)
dη̄ + C2

9. The boundary conditions of Θ = 0 and Θ = 1 can be used here to find C1 and C2, which produces the
equation

Θ (η) = 1− erf (η)

which corresponds to the following solution for the heating of a semi-infinite slab1:

Θ =
T (y, t)− T0

T1 − T0
= 1− erf

(
y√
4αt

)
1T0 is the initial temperature, T1 is the surface temperature, and T is the temperature at a point in space and time afterwards
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(a) Important Point: The above expression tells you about the temperature at some point along
the semi-infinite axis. If you have a semi-infinite object, but you want to find the temperature
somewhere on the finite axis, then this is not the equation for you.

10. If the heat flux is desired at the wall (i.e. surface)2,

qs = qy|y=0 = −k∂T
∂y

∣∣∣∣
y=0

=
k√
παt

(T1 − T0)

since
d

dx
(erf (u)) =

2√
π

exp
(
u2
) du
dx

• As a side-note, the thermal penetration thickness, δT , is defined as the value of η when erf (η) = 0.99
(such that there is a 1% change in Θ). This occurs close to η = 2, so

δT = 4
√
αt

1.4 Heating a Finite Slab
Problem: A solid slab occupying the space between y = −b and y = b is initially at temperature T0. At
time t = 0, the surfaces at y = ±b are suddenly raised to T1 and maintained there. Find T (y, t). Assume a
constant k.

Solution:

1. The microscopic energy balance in the y-direction states that

∂T

∂t
= α

∂2T

∂y2

2. We can introduce the following dimensionless variables to simplify the math:

Θ =
T1 − T
T1 − T0

η =
y

b

τ =
αt

b2

(a) It should be noted that the steady state solution goes to zero because at t =∞, T = T1 such that
Θ = 0 for all τ > 0

3. This makes the microscopic energy balance now read

∂Θ

∂τ
=
∂2Θ

∂η2

4. The initial and boundary conditions are now:

(a) At τ = 0, Θ = 1

(b) At η = ±1, Θ = 0 for τ > 0

2Additional expressions: qs =

√
kρCP√
πt

(T1 − T0). At constant ∆T and ∆t,
.qs,2

qs,1
=

√
k2ρ2CP,2√
k1ρ1CP,1

. The energy (J/m2) over a

period of time is E =
´ t
0 qs dt =

2k
√
t (T1 − T0)
√
πα

.
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5. We can implement the method of separation of variables by stating

Θ (η, τ) = f (η) g (τ)

6. Substituting the trial solution for Θ yields

fg′ = gf ′′

7. Dividing by fg yields
1

g

dg

dτ
=

1

f

d2f

dη2

8. If the left side is a function of only τ , and the right side is a function of only η, then both must be
equal to some constant. The constant will be chosen as −c2 solely to simplify the math. Therefore,

dg

dτ
= −c2g

d2f

dη2
= −c2f

9. Integrating the above equations yields

g = A exp
(
−c2τ

)
f = B sin (cη) + C cos (cη)

10. The integration constant B must equal zero since Θ (η, τ) must equal Θ (−η, τ) due to symmetry about
the xz-plane. Applying the boundary conditions then yields

C cos (c) = 0

(a) If C = 0, then the temperature profile is always zero, which cannot be the case. Other solutions
exist as follows:

c =

(
n+

1

2

)
π

where
n = 0,±1,±2, ...,±∞

11. Therefore,

Θn = An exp

(
−
(
n+

1

2

)2

π2τ

)
Cn cos

(
n+

1

2

)
πη

12. Since Θ is the sum of all Θn,

Θ =

∞∑
n=0

Dn exp

(
−
(
n+

1

2

)2

π2τ

)
cos

(
n+

1

2

)
πη

where
Dn = AnCn +A−(n+1)C−(n+1)

13. Applying the initial condition yields

1 =

∞∑
n=0

Dn cos

(
n+

1

2

)
πη

9



14. The solution for Dn is the following (see BSL for more details)

Dn =
2 (−1)

n(
n+

1

2

)
π

15. Plugging Dn into the equation for Θ in Step 12 yields

T1 − T
T1 − T0

= 2

∞∑
n=0

(−1)
n(

n+
1

2

)
π

exp

(
−
(
n+

1

2

)2

π2αt

b2

)
cos

(
n+

1

2

)
π
y

b

(a) The solution to this equation (as well as the analogous equations for cylindrical and spherical
systems) is graphically shown in BSL Figures 12.1-1, 12.1-2, and 12.1-3

16. For a cube-like solid,

T1 − T
T1 − T0

= Θ

(
x

a
,
αt

a2

)
Θ

(
y

b
,
αt

b2

)
Θ

(
z

c
,
αt

c2

)
= ΘxΘyΘz

where each side is 2a, 2b, and 2c

(a) Important Note: You multiply the Θ of every finite dimension you have. For a semi-infinite
cylinder, you would just useΘr, but for a finite cylinder, you’d have to do ΘrΘz.

(b) Important Note: The middle is 0 since the top is a and the bottom is −a

1.5 Complexification
1.5.1 Background

• Recall that
eiθ = cos θ + i sin θ

• The approach to complexification is to translate a real system to a complex one, solve the system, and
extract the real part of the solution (frequently used with periodic conditions)

1.5.2 Unsteady Heat Conduction near a Wall with Sinusoidal Heat Flux

Problem: A solid body occupying the space from y = 0 to y =∞ is initially at temperature T0. Beginning
at time t = 0, a periodic heat flux is given by

qy = q0 cos (ωt) = q0R
[
eiωt

]
is imposed at y = 0. Here, q0 is the amplitude of the heat flux oscillations, and ω is the frequency. It
is desired to find the temperature in this system, T (y, t), in the periodic steady steady state. Assume a
constant k.

Solution:

1. The microscopic energy balance in the y-direction states that

∂T

∂t
= α

∂2T

∂y2

2. If both sides are multiplied by −k and both sides are acted on by the operator
∂

∂y
then with a little

rearrangement,
∂

∂t

(
−k∂T

∂y

)
= α

∂2

∂y2

(
−k∂T

∂y

)

10



3. The definition of heat flux can then be used such that

∂qy
∂t

= α
∂2qy
∂y2

4. The boundary conditions are:

(a) At y = 0, qy = q0R
[
eiωt

]
(b) At y =∞, qy = 0

5. We postulate an oscillatory solution of the form

qy = R
[
q◦eiωt

]
where q◦ of a complex function of y

6. Substituting the trial solution into the equation in Step 3 yields

R
[
q◦iωe−iωt

]
= αR

[
d2q◦

dy2
eiωt

]
where q◦ means complex q

7. The above expression is mathematically equivalent to

d2q◦

dy2
−
(
iω

α

)
q◦ = 0

8. The new boundary conditions are:

(a) At y = 0, q◦ = qy

(b) At y =∞, q◦ = 0

9. The differential equation has the solution of

q◦ = C1 exp

(
y

√
iω

α

)
+ C2 exp

(
− (1 + i) y

√
iω

2α

)

10. Since
√
i = ±

(
1√
2

)
(1 + i),

q◦ = C1 exp

(
(1 + i) y

√
ω

2α

)
+ C2 exp

(
− (1 + i) y

√
ω

2α

)
11. The second boundary condition requires that C1 = 0, and the first boundary condition requires that

C2 = q0. Therefore,

q◦ = q0 exp

(
− (1 + i) y

√
ω

2α

)
12. As such,

qy = R
[
q0 exp

(
− (1 + i) y

√
ω

2α

)
eiωt

]
= q0 exp

(
−y
√

ω

2α

)
R
[
exp

(
−i
(
y

√
ω

2α
− ωt

))]
13. The above expression is equivalent to

qy = q0 exp

(
−y
√

ω

2α

)
cos

(
ωt− y

√
ω

2α

)

11



14. Integrating Fourier’s law yields

−k
ˆ T0

T

dT̄ =

ˆ ∞
y

qȳdȳ

15. The above expression simplifies to

T − T0 =
q0

k

√
α

ω
exp

(
−y
√

ω

2α

)
cos

(
ωt− y

√
ω

2α
− π

4

)
1.6 Laplace Transforms
1.6.1 General Definitions

• The Laplace Transform, a linear operator, is defined as

F (s) =

ˆ ∞
0

e−stf(t) dt

• We write the Laplace transform as
F (s) = L [f(t)]

• If F (s) = L [f(t)], then we say that f(t) is the inverse Laplace transform, written as

f(t) = L −1 [F (s)]

• The First Shift Formula states that

L
[
eαtf(t)

]
= F (s− a)

where F (s) = L [f(t)]

• Equivalently,
L −1 [F (s)] = eαtL −1 [F (s+ a)]

• The Second Differentiation Formula states that

L [tnf(t)] = (−1)n
dn

dsn
L [f(t)]

• While the Laplace and inverse Laplace operators are linear, they have analogous properties with inte-
grals, so L [A ·B] 6= L [A] ·L [B]

1.6.2 Common Transforms

• The following is a list of basic transforms and inverse transforms:

L
[
eλt
]

=
1

s− λ
and L −1

[
1

s− λ

]
= eλt

L [1] =
1

s
and L −1

[
1

s

]
= 1

L [tn] =
n!

sn+1
and L −1

[
1

sn

]
=

tn−1

(n− 1)!

L [cos (βt)] =
s

s2 + β2
and L −1

[
s

s2 + β2

]
= cos (βt)

L [sin (βt)] =
β

s2 + β2
and L −1

[
1

s2 + β2

]
=

1

β
sin (βt)

12



1.6.3 Using the Laplace Transform to Solve Initial-Value Problems

1. Transform both sides of the differential equation, incorporating the initial data by means of the first
differentiation formula,

L
[
Dkx

]
= skL [x]− sk−1x(0)− sk−2x′(0)− ...− x(k−1)(0)

where D ≡ d

dt

2. Solve algebraically for L [x] in terms of s

3. Obtain x as the inverse Laplace transform of the equation found in Step 2

1.6.4 Reworking the Semi-Infinite Slab

• First, realize that Laplace transforms convert the t to s such that

L [Θ (x, t)] ≡ Θ̄ (x, s)

• Recall that
Θ (x, 0) = 0

Θ (0, t) = 1

Θ (∞, t) = 0

• The differential equation that applies for this system (if we consider the x direction) is

∂Θ

∂t
= α

∂2Θ

∂x2

• Taking the Laplace transform of both sides yields the following once the first differentiation formula is
used,

sL (Θ)− 0 = αL

[
∂2Θ

∂x2

]
• Since we said that L [Θ] = Θ̄,

sΘ̄ = α
∂2Θ̄

∂x2

• Rewriting this with more familiar notation yields

Θ̄′′ =
s

α
Θ̄

• The boundary conditions can be rewritten using the Laplace transform as

Θ̄ (0, s) =
1

s

Θ̄ (∞, s) = 0

• Recall that this second-order homogeneous differential equation can be solved as

D2Θ̄− s

α
Θ̄ = 0→ Θ̄

(
D2 − s

α

)
= 0

such that the roots are

D = ±
√
s

α

which means that the solution is

Θ̄ = C1 exp

(
x

√
s

α

)
+ C2 exp

(
−x
√
s

α

)
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• Applying the second boundary condition yields C1 = 0 such that

Θ̄ = C2 exp

(
−x
√
s

α

)

• The second boundary condition yields C2 =
1

s
such that

Θ̄ =
1

s
exp

(
−x
√
s

a

)
• This Laplace transform is tabulated and can be readily found to be

Θ = 1− erf
(

x√
4αt

)

2 Boundary Layer Theory for Nonisothermal Flow

2.1 Velocity Boundary Layer
• The local friction coefficient is defined as

Cf ≡
2τs
ρu2
∞

– Don’t forget that τs is evaluated at y = 0

• The boundary layer thickness for a velocity boundary is where u = 0.99u∞

• Recall that the shear stress is given by

τs = µ
∂u

∂y

∣∣∣∣
y=0

2.2 Thermal Boundary Layer
• The thermal boundary layer looks like the following (for Ts > T∞)

• For a thermal boundary layer, the boundary layer thickness is the position where
Ts − T
Ts − T∞

= 0.99

• The local surface heat flux can be obtained by

qs|y=0 = −kf
∂T

∂y y=0

∣∣∣∣ = h (Ts − T∞)

such that

h =

−kf
∂T

∂y

∣∣∣∣
y=0

Ts − T∞

14



• Also,

Q =

ˆ
q dAs = (Ts − T∞)

ˆ
h dAs

which is equivalent to
Q = h̄As (Ts − T∞)

where h̄ is the average convection coefficient for the entire surface

– For a sphere, As = 4πr2 = πD2

– For a cylinder, As = 2πrL = πDL

– If it’s a 1-D characteristic length (such that Q has units of W/m) for a cylinder or sphere, then
it’s L = 2πr = πD

• It follows that
h̄ =

1

A

ˆ
h dAs

– For 1D heat transfer of a flat plate3,

h̄ =
1

L

ˆ L

0

h dx

2.3 Laminar and Turbulent Velocity Boundary Layers

• The term xc marks the transition between the laminar and turbulent regions

• The turbulence brings in fluid from the undisturbed main stream closer to the plate

3h̄turb =
1

x

[´ xc
0 hlam(x) dx+

´ x
xc
hturb(x) dx

]
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• The Reynolds number is defined as4

Rex =
ρu∞x

µ
=
u∞x

ν

where
ν ≡ µ

ρ

• The critical Reynolds number that marks the transition from the laminar to turbulent regions is
approximated as the following for a flat-plate

Rex,c = 5× 105

• Differences in the thickness of the velocity and thermal boundary layers tend to be much smaller in
turbulent flow than in laminar flow since turbulence causing mixing that reduces the importance of
conduction in determining the thermal boundary layer thickness

2.4 The Momentum and Energy Balance
• The assumptions that shall be used here include: steady state, incompressible fluid, no body forces

(ignore g), constant properties (e.g. µ, ρ), and continuity (i.e. no mass accumulation)

• Recall that the momentum balance states that

ρ

(
∂−→v
∂t

+−→v · ∇−→v
)

= −∇P + µ∇2−→v + ρ−→g

• For the system we are describing, this simplifies to

ρ (−→v · ∇−→v ) = −∇P + µ∇2−→v

• If we state that u = vx and v = vy, the x-momentum equation is

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= µ

(
∂2u

∂x2
+
∂2u

∂y2

)
− ∂P

∂x

• The full energy balance is given by

ρCp (−→v · ∇T ) = k∇2T + µΦ

where µΦ is the viscous dissipation term

4Additional expression:
Rex,c

ReL
=
xc

L
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2.5 The Boundary Layer Equations
• The additional assumptions for boundary layer theory is the gradients perpendicular to the surface are

much greater than the gradients parallel to the surface and that P∞ changes slowly with x such that

∂P

∂x
≈ dP∞

dx

where P is the pressure gradient within the boundary layer and P∞ is the pressure gradient of the free
stream

• The x-momentum equation simplifies to the following inside the boundary layer

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dP∞
dx

+ ν
∂2u

∂y2

since
∂2u

∂x2
� ∂2u

∂y2
in the boundary layer (i.e. gradients normal to the object’s surface are much larger

than those along the surface)

• The energy equation simplifies to the following as well

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

ν

CP

(
∂u

∂y

)2

since
∂2T

∂x2
� ∂2T

∂y2

• With no viscous dissipation

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2

2.6 Boundary Layer Similarity
• To non-dimensionalize our equations, we introduce the following variables:

x∗ ≡ x

L

y∗ ≡ y

L

u∗ ≡ u

V

v∗ ≡ v

V

T ∗ ≡ T − Ts
T∞ − Ts

P ∗ ≡ P∞
ρV 2

• The shear stress can be expressed equivalently as

τs = µ
∂u

∂y

∣∣∣∣
y=0

=

(
µV

L

)
∂u∗

∂y∗

∣∣∣∣
y∗=0

such that
Cf =

2τs
ρV 2

=
2

ReL

∂u∗

∂y∗

∣∣∣∣
y∗=0
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• The non-dimensionalized x-momentum equation states that

u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
=
dP ∗

dx∗
+

1

ReL

∂2P ∗

∂y∗2

– The boundary condition at the wall is u∗ (x∗, 0) = 0 and for the free stream is u∗ (x∗,∞) =
u∞ (x∗)

V
– The similarity parameter used is

ReL =
uL

ν

• The non-dimensionalized x-thermal equation states that

u∗
∂T ∗

∂x∗
+ v∗

∂T ∗

∂y∗
=

1

ReLPr

∂2T ∗

∂y∗2

– The boundary condition at the wall is T ∗ (x∗, 0) = 0 and for the free stream is T ∗ (x∗,∞) = 1

– The similarity parameter used is

Pr =
ν

α
=

momentum
thermal

• We expect that u∗ = f

(
x∗, y∗,

dP ∗

dx∗
, ReL

)
and T ∗ = f

(
x∗, y∗,

dP ∗

dx∗
, ReL, P r

)
• The heat transfer coefficient can be expressed similarly as

h =
kf
L

∂T ∗

∂y∗

∣∣∣∣
y∗=0

• The Nusselt number is defined as

Nu ≡ hL

kf
=
∂T ∗

∂y∗

∣∣∣∣
y∗=0

= f(x∗, ReL, P r)

Nu ≡ h̄L

kf
= f(ReL, P r)

• It is also true that
Nu = CRemL Pr

n

so the following plots are true
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• Thermophysical quantities are frequently measured at the film temperature, which is defined as

Tf =
Ts + T∞

2

– Unless otherwise stated, evaluate thermophysical quantities at the film temperature. An exception
to this would be evaluating the heat flux at a surface. Since you’re evaluating it at the surface,
you’d use the thermophysical properties at the surface temperature and not the film temperature

3 External Flow

3.1 Flat Plate in Parallel Flow
3.1.1 Hydrodynamic Solutions

• The Blasius solution states the following (it ignores P )

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2

• The thermal boundary layer distance scales as

δv ∼
√
νx

u∞

and
u2
∞
x
∼ νu∞

δ2
v

• The stream function is defined as

u =
∂ψ

∂y

and

v = −∂ψ
∂x

– Note that the signs are reversed for u and v in BSL

• We will then define

f(η) =
ψ

u∞

√
νx

u∞

→ ψ = u∞f(η)

√
νx

u∞

and

η = y

√
u∞
νx

• It turns out that5
u

u∞
=
df

dη

∂u

∂x
= −u∞

2x
η
d2f

dη2

∂u

∂y
= u∞

√
u∞
νx

d2f

dη2

∂2u

∂y2
=
u2
∞
νx

d3f

dη3

5I am now writing f(η) as simply f
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• These equations can be combined with the momentum balance to yield (see BSL 4.3, 4.4)

2
d3f

dη3
+ f

d2f

dη2
= 0

whose values are tabulated in Table 7.1 of Incropera

3.1.2 Laminar Flow Equations

• See Incropera Section 7.2 for the math, but

δv =
5√
u∞
νx

=
5x√
Rex

since
u

u∞
= 0.99 for η = 5

• The shear stress at the wall may be expressed as

τs = µ
∂u

∂y

∣∣∣∣
y=0

= µu∞

√
u∞
νx

d2f

dη2

∣∣∣∣
η=0

so

τs = 0.332u∞

√
ρµu∞
x

=
0.664ρu2

∞
2
√
Rex

– Note that the unit of shear stress is N/m2 or, equivalently,
kg

m · s2

• At the boundary layer (i.e. η = 5), the local friction coefficient is

Cf,x =
2τs,x
ρu2
∞

=
0.664√
Rex

3.1.3 Heat Transfer Solution (Laminar)

• The energy equation in the boundary layer without viscous dissipation can be rewritten as the following
when the dimensionless temperature is introduced and a similarity solution of the form T ∗ = T ∗ (η) is
assumed:

d2T ∗

dη2
+
Pr

2
f
dT ∗

dη
= 0

with boundary conditions of T ∗(0) = 0 and T ∗(∞) = 1

• For Pr > 0.6, the surface temperature gradient is given as

dT ∗

dη

∣∣∣∣
η=0

= 0.332Pr1/3

• The local convection coefficient can be expressed as

hx =
qs

Ts − T∞
=
− (T∞ − Ts)
Ts − T∞

k
∂T ∗

∂y

∣∣∣∣
y=0

= k
(u∞
νx

)1/2 dT ∗

dη

∣∣∣∣
η=0

• From this, we can state that (for Pr > 0.6)

Nux =
hxx

k
= 0.332Re1/2

x Pr1/3

which means that
δv
δt

= Pr1/3
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3.1.4 Average Boundary Layer Parameters (Laminar)

• The average boundary layer parameters are

C̄f,x =
1.328√
Rex

and

Nux =
h̄xx

k
= 0.664Re1/2

x Pr1/3

for Pr > 0.6 since
h̄x = 2hx

3.1.5 Turbulent Flow

• The equations for turbulent flow over a flat plate, the local friction coefficient is approximately

Cf,x = 0.0592Re−1.5
x

for Reynolds numbers between Rx,c ≈ 5× 105 and 108

• Also, the velocity boundary layer thickness is

δ = 0.37xRe−1/5
x

• The local Nusselt number for a Prandtl number between 0.6 and 60 is

Nux = 0.0296Re4/5
x Pr1/3

3.2 Cylindrical and Spherical Systems in Cross Flow
• At the leading edge (θ = 0),

NuD = 1.15Re
1/2
D Pr1/3

• For a cylinder, Hilpert’s relation states that

NuD =
h̄D

k
= CRemDPr

1/3

for Pr > 0.7

• Note that the transition for cylindrical cross flow is Rx,c ≈ 2× 105
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• Technically, there is a more accurate equation for the average Nusselt number for cylindrical cross-flow
given by the following expression,

NuD = 0.3 +
0.62Re

1/2
D Pr1/3[

1 +

(
0.4

Pr

)2/3
]1/4

[
1 +

(
ReD

282000

)5/8
]4/5

that is valid for all ReD and Pr > 0.2

• For a sphere,

NuD = 2 + 0.6Re
1/2
D Pr1/3

• Technically, there is a more accurate equation for the average Nusselt number for spherical cross-flow
given by,

NuD = 2 +
(

0.4Re
1/2
D + 0.06Re

2/3
D

)
Pr0.4

(
µ∞
µs

)1/4

where all properties except µs are evaluated at T∞ and is applicable for 0.71 < Pr < 380, 3.5 < ReD <

7.6× 104, and 1 <
µ

µs
< 3.2

3.3 Potential Flow
• There really isn’t much to say here. See my Transport Phenomena I review packet for a detailed

description of potential flow

• The stream functions are defined as
u = −∂ψ

∂y

and
v =

∂ψ

∂x

• As streamlines are more compact closer to the sphere or cylinder in potential flow, it means the velocity
of the fluid is increasing

3.4 Sphere in a Water Bath
Problem: Consider a hot sphere in a cold bath such that it is quiescent (i.e. no flow - only conduction) and
is at steady state

• Always start with boundary conditions. They are, for T (r):

T (∞) = T∞

T (R) = TR

• There are two ways to approach this (both will yield the same answer). We can try a differential
approach (as opposed to a microscopic energy balance) where

4πr2qr
∣∣ rr=r − 4πr2qr

∣∣
r=r+∆r

= 0

such that it reads “conduction in minus conduction out equals zero.” Note that it is area times flux in
minus area times flux out. The area here is 4πr2 for a sphere

• This expression can be rewritten by dividing through 4π and dividing by dr such that

d

dr

(
r2qr

)
= 0
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• Using Fourier’s Law,
d

dr

(
r2 dT

dr

)
= 0

once constants (i.e. −k) are factored out

– Note that this equation could also have been obtained using the spherical equation of the micro-
scopic energy balance such that

∇2T = 0→ 1

r2

d

dr

(
r2 dT

dr

)
= 0→ d

dr

(
r2 dT

dr

)
= 0

• Anyhow, we can integrate the above expression twice to yield

T = −C1

r
+ C2

which turns to the following when boundary conditions are applied:

T =
R

r
(TR − T∞) + T∞ →

T − T∞
TR − T∞

=
R

r

• The radial flux from the sphere surface can be found by

qr|r=R = −kdT
dr

∣∣∣∣
r=R

=
k (TR − T∞)

R

• We know that Newton’s law of cooling applies at the solid-liquid interface, so

k (TR − T∞)

R
= h (TR − T∞)→ h =

k

R
=

2k

D

• Recall that the Nusselt number is defined as Nu =
hD

k
, so

Nu = 2

for solely conduction in a sphere

4 Tube Flows

4.1 Area Average Quantities
• An area average quantity is defined as

〈f〉 =

˜
f dA˜
dA

• For the area average shear stress around a sphere,

〈τ〉 =

˜
τ (r, z) r dr dθ´ 2π

0

´ r
0
r dr dθ

• The mixing cup temperature is defined as

Tmc =
〈vz · T 〉
〈vz〉

• At a constant heat flux,
∂T (r, z)

∂z
=
dTmc
dz

where both quantities are for fully developed thermal regions and laminar flow in a tube. Therefore,
the axial temperature gradient is independent of the radial location
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4.2 Laminar Flow in Circular Tubes
4.2.1 Heat Flow

• The log-mean temperature difference is defined as

∆Tlm ≡
∆To −∆Ti

ln

(
∆To
∆Ti

)
where the subscript i represents the fluid flow through the tube, and the subscript o represents fluid
flow over the tube

• For internal flow in a circular cylinder,

Q = hπDL∆Tlm

• From Transport Phenomena I, we know that for laminar flow in a circular tube, vz,max = 2vz,mean and

vz =
(P0 −PL)R2

4µL

[
1−

( r
R

)2
]

• It will simply be stated that

NuD =
hD

k
= 4.36

for laminar flow in a circular tube with constant surface heat flux

• To see how the local Nusselt number changes with different conditions, consult Figure 14.2-1 in Bird,
which shows a plot of Nuloc vs.

αz

〈vz〉D2

5 Diffusivity and the Mechanisms of Mass Transport

5.1 Kinetic Theory and Lennard-Jones Potential
• The Kinetic Theory of Gases makes the assumption that all atoms are “hard spheres” that collide

elastically and there are no intermoelcular forces. From this:

– The mean free path is given as

λ =
1√

2πd2n

where d is the diameter and n is the number density
– The mean molecular speed is

ū =

√
8kBT

πm

where kB is Boltzmann’s constant (i.e. 1.38 × 10−23 m2 · kg · s−2 ·K−1, or, equivalently, 1.38 ×
10−23 J/K)

– The collision frequency is

Z =
1

4
nū

– The dynamic viscosity is

µ =
1

3
nmūλ =

1

3
ρūλ =

2

3π

√
πmkBT

πd2
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– The thermal conductivity is given as

k =
1

2
nkBūλ =

√
mkBT/π

πd2

and has units of K/m

• The Lennard-Jones potential states that that

φ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]

where φ(r) is the potential energy, σ is the characteristic diameter of the molecules, and ε is the
maximum energy of attraction between a pair of molecules

– The values for σ are tabulated in Table E.1 of BSL

• The viscosity of a pure monatomic gas may be written as

µ =
5

16

√
πmkBT

πσ2Ωµ
= 2.6693× 10−5

√
MT

σ2Ωµ

where the second equation has σ with units of angstrom, T with units of Kelvins, M is the molecular
weight (unitless), and µ with units of g/cm · s

– Ωµ is called the collision integral for viscosity and is tabulated in Table E.2 of BSL

• The thermal conductivity using Lennard-Jones parameters is

k =
1.989× 10−4

√
T

M
σ2Ωµ

5.2 Fick’s Law of Binary Diffusion (Molecular Mass Transport)
• If we define wi has the mass flow of substance i, ωi as the mass fraction of substance i, Dij as the

diffusivity of i in j,
wi
A

= ρDij
∆ωi
L

where
wi
A

is the mass flux of substance i

– The units of Dij are length-squared per unit time

– It is also important to recall that ∑
i

ωi = 1

• This can be rewritten as
−→
j i = −ρDij∇ωi

where ji is the mass flux of substance i. This is Fick’s Law.

– The mass flux is defined as ji ≡ ρωi∆vi
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– The mass flux is measured with respect to the motion of the center of mass, so∑
i

ji = 0

• In general, for a mixture,
v =

∑
i

ωivi

which translates to “the velocity is equal to the sum of the mass fraction of each substance times its
respective velocity”

• The Schmidt number is defined as
Sc =

ν

Dij

• The Lewis number is defined as
Le =

α

Dij

• Also, recall that the ideal gas law states

ρ =
MP

RT

and

c =
P

RT

where c is a molar density defined as c ≡ ρ

M

• The mass fraction is most frequently written as

ωi =
ρi
ρ

when volume is constant

– In addition,
c =

ρω

M

• The mole fraction is most frequently written as

xi =
ci
c

when volume is constant

5.3 Temperature and Pressure Dependence of Diffusivities
• For a binary-gas mixture at low pressure,

PDAB

(PcAPcB)
1/3

(TcATcB)
5/12

(
1

MA
+

1

MB

)1/2
= a

(
T√

TcATcB

)b

where the subscript c represents a critical property, which can be obtained from Table E1 in BSL. In
this equation, DAB has units of cm2/s, P has units of atm, and T has units of K

– For a non-polar gas pair, a = 2.745× 10−4 and b = 1.823 (excluding helium and hydrogen)
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– For a non-polar gas and water, a = 3.640× 10−4 and b = 2.334

• Interdiffusion is synonymous with self-diffusion and is denoted by DAA∗

– Using reduced temperatures and pressures, one can find the reduced self-diffusivity from Figure
17.2-1 in BSL if cDAA∗ is given at a specific temperature and pressure. Recall that

Reduced quantity=
Regular quantity
Critical Quantity

∗ To implement this method, realize that the (cDAA∗)r is constant for a given system even if
temperature and pressure changes. Therefore, if you are given cDAA∗ at one temperature
and pressure and want it at another temperature and pressure, use Figure 17.2-1 to find the
critical diffusivity, and then use this value at the new reduced pressure and temperature to
find the new (not critical) diffusivity

– Another way to find the self-diffusivity is to use the equation

(cDAB)c = 2.96× 10−6

(
1

MA
+

1

MB

)1/2
P

2/3
cA

T
1/6
cA

where c is a concentration given in mol/cm3

• For a binary-gas mixture at high density and low pressure, one can use Figure 17.2-1 by replacing the
above formula with

(cDAB)c = 2.96× 10−6

(
1

MA
+

1

MB

)1/2
(PcAPcB)

1/3

(TcATcB)
1/12

5.4 Theory of Diffusion in Gases at Low Density
• The kinetic theory of gases states that, for rigid spheres,

DAB =
2

3

√
kBT

π

√
1

2

(
1

mA
+

1

mB

)
1

π

(
(dA + dB)

2

)2

1

n

• With the use of Lennard-Jones constants, the above equation can be rearranged to

cDAB = 2.2646× 10−5

√
T

(
1

MA
+

1

MB

)
1

σ2
ABΩD,AB

– If the ideal gas law is assumed,

DAB = 0.0018583

√
T 3

(
1

MA
+

1

MB

)
1

Pσ2
ABΩD,AB

where the variables are in the conventional units previously described. The values for the collision
integral for diffusivity can be found in Tables E1 and E2 of BSL

• If not given, the values for σAB and εAB can be given by (for nonpolar gas pairs)

σAB =
σA + σB

2

and
εAB =

√
εAεB
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5.5 Mass Average and Molar Average Velocity
• When we state vi, or the velocity of species i, this is not the velocity of an individual molecule of i.

Instead, it is the mean of all the velocities of molecules of species i. In essence,

−→v =

∑N
i=1 ρi

−→v i∑N
i=1 ρi

=

N∑
i=1

ωi
−→v i

is the mass average velocity

• The molar average velocity is given as

−→
v∗ =

∑N
i=1 ci

−→v i∑N
i=1 ci

=

N∑
i=1

xi
−→v i

5.6 Summary of Mass and Molar Fluxes
• As stated earlier, Fick’s Law states that the mass flux is

−→
j A = −ρDAB∇ωA

• This can be stated as −→
J∗A = −cDAB∇xA

where this is now the mole flux

• The combined mass flux for one species is

−→nA =
−→
jA + ρA

−→v

• The combined molar flux for one species is

−→
NA =

−→
J∗A + cA

−→
v∗

• The mass flux for N species is
−→
jA = −→nA − ωA

N∑
i=1

−→ni

• The molar flux for N species is
−→
J∗A =

−→
NA − xA

N∑
i=1

−→
Ni

• For a binary system with one-dimensional diffusion,

NA,z = −cDAB
∂xA
∂z

+ xA (NA,z +NB,z)

6 Concentration Distributions in Solids and in Laminar Flows

6.1 Shell Mass Balances and Boundary Conditions
• The molar flux can be related to the concentration gradient by

NA = −cDAB∇xA + xA (NA +NB)

– Note that ∇ is acting as a gradient here since xA is a scalar
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• For small xA, the right-hand term drops out, and implementing

xa =
cA
c

yields
NA = −DAB∇cA

when xA is small. This is frequently encountered at surfaces.

• In words, the shell mass balance states “rate of mass of A in minus rate of mass of A out plus rate of
production of mass of A by homogeneous reaction equals zero”

• The boundary conditions include:

– The concentration at a surface can be specified (e.g. xA = xA0)
– The mass flux at a surface can be specifies (e.g. NA = NA0)
– If diffusion occurs in a solid, NA0 = kc (cA0 − cAb) may apply, where NA0 is the molar flux at the

surface, cA0 is the surface concentration, cAb is the concentration in the bulk fluid stream, and kc
is the mass transfer coefficient

– The rate of chemical reaction at a surface can be specified. For an n-th order reaction, NA0 = kcc
n
A0

may apply

6.2 Diffusion Through a Stagnant Gas Film
Problem: Consider the schematic shown below. Note that B is immiscible with A, so while B can be present
in the system at steady state, there is no net flux of B down or out, just across such that NB.z = 0. For the
full description of the problem, see Section 18.2 of BSL.

1. We write the mass balance in the z direction as

NA,z = −cDAB
dxA
dz

+ xANA,z

2. Solving for NA,z yields

NA,z =
−cDAB

1− xA
dxA
dz

3. A steady-state mass balance can be written as

SNA,z|z − SNA,z|z+∆z = 0

where S is a cross-sectional area
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4. Dividing by S∆z and letting ∆z → 0 yields

−dNAz
dz

= 0

5. This can therefore be written as
d

dz

(
cDAB

1− xA
dxA
dz

)
= 0

(a) For an ideal gas mixture, c is constant for a constant T and P . Also, for gases, DAB is usually
independent of the composition such that

d

dz

(
1

1− xA
dxA
dz

)
= 0

which can be integrated to yield6

− ln (1− xA) = C1z + C2

6. Although this is not obvious, we can let C1 = − lnK1 and C2 = − lnK2 such that7

1− xA = Kz
1K2

7. The boundary conditions are: xA(z1) = xA1 and xA(z2) = xA2

8. Applying the boundary conditions yields 1 − xA1 = Kz1
1 K2 and 1 − xA2 = Kz2

1 K2, which can be
combined to yield

1− xA2

1− xA1
= Kz2−z1

1

(a) A little algebraic manipulation yields

K1 =

(
1− xA2

1− xA1

)1/(z2−z1)

(b) We need an expression for K2, so

1− xA1 =

(
1− xA2

1− xA1

)z1/(z2−z1)

K2 → K2 = (1− xA1)

(
1− xA2

1− xA1

)−z1/(z2−z1)

9. Plugging in the results for K1 and K2 yields

1− xA =

(
1− xA2

1− xA1

)z/(z2−z1)

(1− xA1)

(
1− xA2

1− xA1

)−z1/(z2−z1)

which can be rearranged to
1− xA
1− xA1

=

(
1− xA2

1− xA1

)(z−z1)/(z2−z1)

10. To obtain the profile for xB , recognize that xA + xB ≡ 1

6Note that a useful integral for these types of problems is
´ 1

ax+ b
dx =

1

a
ln |ax+ b|

7Generally speaking, for an equation of the form a ln (1 + bxA) = C1z+C2, you want to make C1 = a lnK1 and C2 = a lnK2.
From this, the final equation will be of the form 1 + bxA = Kz

1K2.
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11. Now, if the average concentration of B is desired,

xB =

´ z2
z1
xB dz´ z2
z1
dz

so

x̄B
xB1

=

´ z2
z1

(
xB
xB1

)
dz

´ z2
z1
dz

12. Define the non-dimensional height variable ξ =
z − z1

z2 − z1
, such that dz = (z2 − z1) dξ and

xB
xB1

=

´ 1

0

(
xB
xB1

)ξ
dξ

´ 1

0
dξ

13. The integral table states that
´
ax dx =

ax

lnx
, so

xB
xB1

=

(
xB2

xB1

)ξ
ln

(
xB2

xB1

)
∣∣∣∣∣∣∣∣∣
1

0

which yields
xB =

xB2 − xB1

ln

(
xB2

xB1

) ≡ (xB)ln

14. The rate of evaporation is the rate of mass transfer at the liquid-gas interface and can be found by
calculating NA,z at z = z1. Therefore,

NA,z|z1 = − cDAB

1− xA1

dxA
dz

∣∣∣∣
z1

=
cDAB

xB1

dxB
dz

∣∣∣∣
z1

(a) Implementing the dimensionless length,

cDAB

xB1

dxB
dξ

∣∣∣∣
ξ=0

dξ

dz
=

cDAB

z2 − z1

d (xB/xB1)
ξ

dξ

∣∣∣∣∣
ξ=0

15. The final expression is

NA,z|z1 =
cDAB

z2 − z1
ln

(
xB2

xB1

)
=

cDAB

(z2 − z1) (xB)ln

(xA1 − xA2)

(a) This expression can be used to find the diffusivity constant of an evaporating substance

16. For diffusion with a moving interface, see Example 18.2-1 in BSL

31



6.3 Diffusion through a Spherical Film
Problem: Consider diffusion through a spherical shell with radii r1 and r2 where r1 < r < r2. For the full
problem statement, see Example 18.2-3.

1. The shell balance states that in the r direction states that

NA4πr2
∣∣
r
− NA4πr2

∣∣
r+∆r

= 0

which can be rewritten as
d

dr

(
r2NA

)
= 0

2. We can state that NB,r = 0 since B is insoluble in A. Therefore,

NA,r = −cDAB
dxA
dr

+ xANA,r

which can be solved for NA,r as

NA,r = − cDAB

1− xA
dxA
dr

3. Therefore,
d

dr

(
r2 cDAB

1− xA
dxA
dr

)
= 0

4. Integrating this yields

− ln (1− xA) =
C1

r
+ C2

5. Let C1 = − lnK1 and C2 = − lnK2 such that

1− xA = K
1/r
1 K2

6. As in the previous subsection, this comes out to

1− xA
1− xA1

=

(
1− xA2

1− xA1

)(1/r1−1/r)/(1/r1−1/r2)

when the boundary conditions are applied

7. The molar flow can be found as

WA = 4πr2
1NA,r

∣∣
r1

=
4πcDAB

1
r1
− 1

r2

ln

(
1− xA2

1− xA1

)
which is applicable for any spherical surface of radius r between r1 and r2
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6.4 Diffusion with a Heterogeneous Chemical Reaction (e.g. Gas Reacting on
Solid Catalyst)

6.4.1 Diffusion with an Instantaneous Heterogeneous Reaction

Problem: Consider the heterogeneous chemical reaction of 2A → B shown in the diagram below. For the
full problem statement, see Section 18.3 in BSL.

1. From the stoichiometry, we know that8

NB,z = −1

2
NA,z

2. We also know that
NA,z = −cDAB + xA

(
NA,z −

1

2
NA,z

)
which simplifies to

NA,z = − cDAB

1− 1
2xA

dxA
dz

3. The shell mass balance states that

SNA,z|z − SNA,z|z+∆z = 0

which leads to
dNA,z
dz

= 0

4. This yields
d

dz

(
cDAB

1− 1
2xA

dxA
dz

)
= 0

5. Integrating this yields

−2 ln

(
1− 1

2
xA

)
= C1z + C2

for constant cDAB

6. Substituting C1 = −2 lnK1 and C2 = −2 lnK2 yields

1− xA
2

= Kz
1K2

7. The boundary conditions are xA(0) = xA0 and xA(δ) = 0

8For a reaction aA→ bB, NB,z = −
b

a
NA,z
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8. Applying the boundary conditions yields

1− 1

2
xA =

(
1− 1

2
xA0

)1−z/δ

9. To get the molar flux, we need
dxA
dz

. Since we want the molar flux at the film, and the film is at z = 0,

we technically want
dxA
dz

∣∣∣∣
z=0

. The final result yields9 so‘

NA,z =
2cDAB

δ
ln

(
1

1− 1
2xA0

)

6.4.2 Diffusion with a Slow Heterogeneous Reaction

Problem: Attempt the previous problem with a slow reaction (i.e. not instantaneous). Assume that the rate
A disappears at the catalyst surface is given as NA,z = k′′1 cA = k′′1 cxA, in which k′′1 is a rate constant for the
pseudo-first-order surface reaction. For the full problem statement, see Example 18.3-1 in BSL.

1. The set-up is identical up until the boundary conditions at which point xA(δ) =
NA,z
k′′1 c

instead of

xA(δ) = 0

2. Applying the boundary conditions yields(
1− 1

2
xA

)
=

(
1− 1

2

NA,z
k′′1 c

)z/δ (
1− 1

2
xA0

)1−z/δ

3. Evaluating
dxA
dz

∣∣∣∣
z=0

and solving for NA,z yields,

NA,z =
2cDAB

δ
ln

1− 1
2

(
NA,z

k′′1 c

)
1− 1

2xA0


4. If k′′1 is large (note that this means the reaction is fast, but not so fast that it is instantaneous) then

NA,z =
2cDAB/δ

1 + DAB

k′′1 δ

ln

(
1

1− 1
2xA0

)
which can be obtained by a Taylor expansion on the logarithm term and keeping just the first term
such that ln (1 + p) ≈ p for small p

5. The Damkohler Number of the second order can be defined as

DaII =
k′′1 δ

DAB

(a) In the limit of DaII →∞, we obtain the expression for the instantaneous reaction

(b) In words, the Damkohler number is the ratio of the chemical reaction rate compared to the
diffusion rate (i.e. mass transfer)

(c) A very fast reaction is governed by mass transfer, but a very slow reaction is governed by kinetics

9The following is a helpful identity:
d

dx

(
abx
)

= babx ln (a)

34



6.5 Diffusion with a Homogeneous Chemical Reaction (e.g. Gas Dissolving in
Liquid)

Problem: Consider a gas A diffusing into a liquid B. As it diffuses, the reaction A+ B → AB occurs. You
can ignore the small amount of AB that is present (this is the pseudobinary assumption).

1. Note that the reaction rate can be given as k′′′1 cA if we assume pseudo-first order. This makes the shell
mass balance

SNA,z|z − SNA,z|z+∆z − k
′′′

1 cAS∆z = 0

2. This can be rewritten as
dNA,z
dz

+ k
′′′

1 cA = 0

3. If the concentration of A is small (i.e. dilute), then we can state that xA goes to zero in

NA,z = −cDAB
dxA
dz

+ xA (NA,z +NB,z)

such that
NA,z = −DAB

dcA
dz

4. Combining this with the equation in step 2 yields

DAB
d2cA
dz2

− k′′′1 cA = 0

5. The boundary conditions are cA(0) = cA0 and NA,z(L) =
dcA
dz

∣∣∣∣
L

= 0 . The first boundary condition

states that the concentration of A at the surface is fixed. The second boundary condition states that
no A diffuses through the bottom of the container.

6. Multiply the equation in Step 4 by
L2

cA0DAB
for later simplicity. This yields

L2

cA0

d2cA
dz2

− k′′′1 cAL
2

cA0DAB
= 0

7. Let’s define the dimensionless variable known as the Thiele modulus:

φ ≡
√
k
′′′
1 L

2/DAB

8. Let’s also define the dimensionless length
ξ ≡ z

L
such that

dz = Ldξ
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9. The concentration ratio ca be defined as
Γ ≡ cA

cA0

10. Using these variables,
d2Γ

dξ2
− φ2Γ = 0

11. The general solution is given as

Γ = C1 cosh (φξ) + C2 sinh (φξ)

since

cosh (p) ≡ ep + e−p

2

and

sinh (p) ≡ ep − e−p

2

12. The boundary conditions are at ξ = 0, cA = cA0, so Γ = 1 and ξ = 1,
dΓ

dξ
= 0. Applying boundary

condition,
1 = C1 cosh (0) + C2 sinh (0)→ C1 = 1

and
dΓ

dξ
= φ sinh (φξ) + C2φ cosh (φξ)

and invoking the second boundary condition yields

0 = φ sinhφ+ C2φ coshφ→ C2 = − tanhφ

13. This yields
Γ = cosh (φξ)− tanh (φ) sinh (φξ)

which can be rearranged to10

Γ =
cosh (φ) cosh (φξ)− sinh (φ) sinh (φξ)

cosh (φ)
=

cosh [φ (1− ξ)]
coshφ

14. Reverting to the original notation yields,

cA
cA0

=
cosh

[√
k
′′′
1 L

2/DAB

(
1− z

L

)]
cosh

(√
k
′′′
1 L

2/DAB

)
15. The average concentration in the liquid phase can be given by

cA
cA0

=

´ L
0

cA
cA0

dz

´ L
0
dz

=
tanhφ

φ

16. The molar flux at the surface is

NA,z|z=0 = − DAB
dcA
dz

∣∣∣∣
z=0

=

(
cA0DAB

L

)
φ tanh (φ)

10Note that cosh (x± y) = coshx cosh y ± sinhx sinh y and sinh (x± y) = sinhx cosh y ± coshx sinh y
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6.6 Gas Absorption with Chemical Reaction in Agitated Tank
Problem: Consider the diagram shown below. Assume that each gas bubble is surround by a stagnant liquid
film of thickness δ,which is small compared to the bubble diameter. Assume a quasi-steady concentration
profile is quickly established in the liquid film after the bubble is formed. The gas A is only sparingly soluble
in the liquid, so we can neglect the convection term. The liquid outside the stagnant film is at concentration
cAδ and is constant. Even though this is a spherical bubble, it is a thin shell, so you can treat it as a slab.
For the full problem statement, see Example 18.4-1 in BSL.

1. The setup is the same as before, but the boundary conditions are at z = 0, ξ = 0,cA = cA0, Γ = 1,

and at z = δ, ξ = 1, cA = cAδ, Γ = B if we state that B =
CAδ
CA0

. Note that the dimensionless length

should be redefined accordingly as ξ =
z

δ
and the Thiele modulus is redefined as φ =

√
k
′′′
1 δ

2/DAB

2. From the previous problem,
Γ = C1 cosh (φξ) + C2 sinh (φξ)

3. Applying boundary condition 1 yields
C1 = 1

4. Applying boundary conditions 2 yields

C2 =
B − coshφ

sinhφ

5. This means

Γ = cosh (φξ) +
B − coshφ

sinhφ
sinh (φξ) =

sinhφ cosh (φξ) + (B − coshφ) sinh (φξ)

sinhφ

6. Now equate A entering the liquid at z = δ to amount consumed in bulk:

−SDAB
dcA
dz

∣∣∣∣
z=δ

= V k
′′′

1 cAδ

7. We need the
dcA
dz

∣∣∣∣
z=δ

term. This can be rewritten as

dcA
dz

=
dcA
dξ

dξ

dz
=
dcA
dξ

1

δ
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8. Therefore,
dcA
dz

∣∣∣∣
z=δ

=
cA0

δ

(
φ sinh2 φ− φ cosh2 φ+Bφ coshφ

sinhφ

)
using the identity coshx2 − sinhx2 = 1 yields

dcA
dz

∣∣∣∣
z=δ

=
cA0

δ

(
Bφ coshφ− φ

sinhφ

)
9. So,

−SDAB
cA0

δ

(
Bφ coshφ− φ

sinhφ

)
= V k

′′′

1 cAδ

10. This can be solved for B as
B =

1

coshφ+
V

Sδ
φ sinhφ

11. The total rate of absorption is

N̆ ≡
NA,z|z=0 δ

cA0DAB
=

φ

sinhφ

(
coshφ− 1

coshφ+ V
Sδφ sinhφ

)

which is plotted in Figure 18.4-4 of BSL

6.7 Diffusion into a Falling Liquid Film (Gas Absorption)
Problem: Consider the absorption of A into a falling film of liquid B. For the full problem, see Section 18.5
in BSL.

1. The velocity profile is found from Transport I as

vz (x) = vmax

[
1−

(x
δ

)2
]

2. The concentration will change in the x and z direction, so

NA,z|zW∆x− NA,z|z+∆zW∆x+ NA,x|xW∆z − NA,x|x+∆xW∆z = 0

at steady state
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3. This then yields
∂NA,z
∂z

+
∂NA,x
∂x

= 0

4. We now want expressions for the molar mass flux:

NA,z = −DAB
∂cA
∂z

+ xA (NA,z +NB,z)

which reduces to the following because the transport of A in the z direction will be primarily by
convection (not diffusion)

NA,z = xA (NA,z +NB,z) ≈ cAvz (x)

and in the x direction we have
NA,x = −DAB

∂cA
∂z

since there is mostly diffusion in the x direction (not convection)

5. Therefore,

vz
∂cA
∂z

= DAB
∂2cA
∂x2

6. Inserting the velocity component yields

vz,max

[
1−

(x
δ

)2
]
∂cA
∂z

= DAB
∂2cA
∂x2

7. The boundary conditions are: at z = 0, cA = 0 and x = 0,cA = cA0 and x = δ,
∂cA
∂x

= 0 since there
is pure B at the top, the liquid-gas interface is determined by the solubility of A in B, and A can’t
diffuse through the wall

8. We shall use the limiting case of the Penetration Model, which states that there is only penetration in
the outer layers of the film such that vz ≈ vz,max. This means,

vz,max
∂cA
∂z

= DAB
∂2cA
∂x2

and the third boundary condition is changed to at x =∞, cA = 0

9. This looks like a semi-infinite solid problem, so

cA
cA0

= 1− erf

(
x√

4DABz/vz,max

)

10. The local mass flux at the gas-liquid interface may be found by

NA,x|x=0 = −DAB
∂cA
∂x

∣∣∣∣
x=0

= cA0

√
DABvmax

πz

11. The total molar flow across the surface at x = 0 is

WA =

ˆ W

0

ˆ L

0

NA,x|x=0 dz dy = WLcA0

√
4DABvmax

πL
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6.8 Gas Absorption from Rising Bubbles
Problem: Estimate the rate at which gas bubbles of A are absorbed by liquid B as the gas bubbles rise at
their terminal velocity, vt, through a clean quiescent liquid. See Example 18.5-1 in BSL for more information.

• The molar absorption rate is

(NA)avg = cA0

√
4DABvt
πD

and is applicable for potential flow and for gas bubbles between 0.3 cm and 0.5 cm

• For creeping flow around the bubble,

(NA)avg = cA0

√
4DABvt

3πD

6.9 Diffusion into a Falling Liquid Film (Solid Dissolution)
Problem: See Section 18.6 in BSL for the full problem statement.

1. The velocity profile can be obtained from Transport I as

vz =
ρgδ2

2µ

[
1−

(
1− y

δ

)2
]

=
ρgδ2

2µ

[
2
(y
δ

)2

−
(y
δ

)2
]

for the case where cosβ = 1 and x = δ − y

2. To make the equation simpler, we can state that
(y
δ

)2

� y

δ
,

vz =
ρgδy

µ
= ay

since
a ≡ ρgδ

µ

3. The boundary conditions are at z = 0, cA = 0 and y = 0, cA = cA0 and y =∞, cA = 0

4. Define the combination variable of
f(η) =

cA
cA0

where

η ≡ y
(

a

9DABz

)1/3
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5. The partial differential equation is
d2f

dη2
+ 3η2 df

dη
= 0

6. This solution is tabulated as
f = C1

ˆ η

0

exp
(
−η̄3

)
dη̄ + C2

7. It turns out that
cA
cA0

=

´∞
η

exp
(
−η̄3

)
dη̄´∞

0
exp (−η̄3)

3
dη̄

=

´∞
η

exp
(
−η̄3

)
Γ
(

4
3

)
8. The local mass flux at the wall can be obtained as follows

NA,y|y=0 = −DAB
∂cA
∂y

∣∣∣∣
y=0

= − DABcA0

[
d

dη

(
cA
cA0

)
∂η

∂y

]∣∣∣∣
y=0

= − DABcA0

−exp
(
−η3

)
Γ

(
4

3

) (
a

9DABz

)1/3


∣∣∣∣∣∣∣∣
y=0

=
DABcA0

Γ

(
4

3

) (
a

9DABz

)1/3

9. Therefore the molar flow of A across the surface is

WA =

ˆ W

0

ˆ L

0

NA,y

∣∣∣∣∣
y=0

dz dz =
2DABcA0WL

Γ

(
7

3

) (
a

9DABL

)1/3

6.10 Diffusion and Chemical Reaction Inside a Porous Catalyst
Problem: We shall describe diffusion within a porous catalyst pellet. We shall describe an effective diffusivity,
which is an averaged quantity. Consider a pellet of radius R that is submerged in gaseous reactant A and
gaseous product B. Species A diffuses inside the catalyst and is converted to B on the surface. For the full
problem statement, see Section 18.7 of BSL.

1. The mass balance states that

NA,r4πr
2
∣∣
r
− NA,r4πr

2
∣∣
r+∆r

+RA4πr2∆r = 0

where the rightmost term is the molar rate of production of A by chemical reaction in the shell of
thickness ∆r

2. This translates to
d

dr

(
r2NA,r

)
= r2RA

3. The effective diffusivity is

NA,r = −Deff
dcA
dr

4. Therefore,

Deff
1

r2

d

dr

(
r2 dcA

dr

)
= −RA

for constant Deff

5. The boundary conditions are cA = cAR at r = R and cA = finite at r = 0
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6. A change of variables can be implemented to yield

d2f

dr2
=

(
k
′′

1 a

Deff

)
f

7. This has the solution of

cA
cAR

=
C1

r
cosh

r
√

k
′′

1 a

Deff

+
C2

r
sinh

r
√

k
′′

1 a

Deff


8. Using the boundary conditions yields

cA
cAR

=

(
R

r

) sinh

(
r

√
k
′′

1 a

Deff

)

sinh

(
R

√
k
′′

1 a

Deff

)
9. The molar flow at the surface r = R is

WAR = 4πR2NAR = −4πR2Deff
dcA
dr

∣∣∣∣
r=R

10. Evaluating the derivative and plugging it in yields

WAR = 4πRDeffcAR

1−R

√
k
′′

1 a

Deff

 coth

R
√

k
′′

1 a

Deff


11. The best possible scenario is if every element’s surface is exposed such that cA = cAR and then

WAR,0 = −4

3
πR3ak

′′

1 cAR

12. The efficiency factor is defined as

ηA ≡
WAR

WAR,0
=

3

φ2
(φ coth (φ)− 1)

where φ is once the Thiele modulus of φ = R

√
k
′′

1 a

Deff
. Note that this Thiele modulus has a different

functional form.

(a) For φ = 10, coth ≈ 1, so for large φ, ηA ≈
3

φ

13. For a nonspherical particle,

Rnonsphere = 3

(
VP
SP

)
where VP is the volume and SP is the external surface

14. The conversion rate is then
|WAR| ≈ VPak

′′

1 cARηA

for nonspherical particles where

ηA =
1

3Λ2
(3Λ coth (3Λ)− 1)

and the generalized modulus is defined as

Λ ≡ φ

R

VP
SP

=
VP
SP

√
k
′′

1 a

Deff
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7 Equations of Change for Multicomponent Systems

7.1 The Equations of Continuity for a Multicomponent Mixture
• The microscopic mass balance states that

∂ρα
∂t

= − (∇ · ρα−→v )−
(
∇ · −→j α

)
+ rα

• The continuity equation for the mixture is

∂ρ

∂t
= − (∇ · ρ−→v )

and at steady-state conditions with constant density,

∇ · −→v = 0

• The molar equation of continuity states that

∂cα
∂t

= −
(
∇ ·
−→
Nα

)
+Rα

7.2 Summary of the Multicomponent Equations of Change
• For a binary system with constant ρDAB ,

ρ

(
∂ωA
∂t

+ (−→v · ∇ωA)

)
= ρDAB∇2ωA + rA

– For a system also at steady-state, you can divide by the molar mass, MA, to get

−→v · ∇cA = DAB∇2cA + rA

• For a binary system with constant cDAB ,

c

(
∂xA
∂t

+ (−→v ∗ · ∇xA)

)
= cDAB∇2xA + (xBRA − xARB)

• For binary systems with zero velocity and no chemical reaction, Fick’s Law states that

∂cA
∂t

= DAB∇2cA

7.3 Simultaneous Diffusion, Convection, and Reaction with a Porous Plug
Problem: See Example 19.1-1 in BSL.

1. We can use the equation for binary systems with constant ρDAB ,

ρ

(
∂ωα
∂t

+ (−→v · ∇ωα)

)
= ρDAB∇2ωA + rA

2. We can set the time-derivative term equal to zero since it is at steady-state. We can also divide by
MA (the molecular mass) to get

v0
dcA
dz

= DAB
d2cA
dz2

− k
′′′

1 cA
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3. Dividing by DAB yields
d2cA
dz2

− v0

DAB

dcA
dz
− k

′′′

1

DAB
cA

4. Set the boundary conditions as cA = cA0 at z = 0 since nothing has reacted the inlet and cA = 0 at
z =∞ when it has all reacted

5. The final solution is tabulated as

cA
cA0

= exp

 v0z

2DAB

1−

√
1 +

4k
′′′

1 DAB

v2
0


7.4 Concentration Profile in Tubular Reactors
Problem: See Example 19.4-2 in BSL.

1. We can use the equation for binary systems with constant ρDAB ,

ρ

(
∂ωα
∂t

+ (−→v · ∇ωα)

)
= ρDAB∇2ωA + rA

2. The system is at steady-state, so the time-derivative term goes to zero. We can also ignore rA for
reasons I do not completely understand. Therefore,

vz
∂cA
∂z

= DAB

[
1

r

∂

∂r

(
r
∂cA
∂r

)
+
∂2cA
∂z2

]
3. We can ignore the axial diffusion compared to the axial convection,

vz
∂cA
∂z

= DAB

[
1

r

∂

∂r

(
r
∂cA
∂r

)]
4. The velocity profile is given as

vz = vz,max

(
1−

( r
R

)2
)

5. Plugging this expression for vz into our differential equation yields

vz,max

(
1−

( r
R

)2
)
∂cA
∂z

= DAB

[
1

r

∂

∂r

(
r
∂cA
∂r

)]
6. The boundary conditions are cA = cA0 at z = 0, cA = 0 at r = R, and cA = finite at r = 0

7. We can define y = R − r such that the second boundary condition becomes cA = 0 at y = 0 and the
third boundary condition becomes cA = finite and at y =∞

8. This allows us to rewrite our expression as

2vz,max
y

R

∂cA
∂z

= DAB
∂2cA
∂y2

9. One can find that the solution to this expression

cA
cA0

=

´ η
0

exp
(
−η̄3

)
dη̄

Γ

(
4

3

)
where

η ≡ y

R

(
2vz,maxR

2

9DASz

)1/3
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8 Concentration Distributiuons with More than One Independent
Variable

8.1 Time-Dependent Diffusion
8.1.1 Gas Adsorption with Rapid Reaction

Problem: See Example 20.1-2 in BSL.

1. The concentration profiles can be described as

∂cA
∂t

= DAS
∂2cA
∂z2

for 0 ≤ z ≤ zR(t) and
∂cB
∂t

= DBS
∂2cB
dz2

for zR(t) ≤ z ≤ ∞

2. The initial conditions state that at t = 0, cB = cB∞ and cA = 0 for all z > 0. The boundary conditions

are at z = 0, cA = cA0. At z = zR(t), cA = cB = 0. At z = zR(t), −1

a
DAS

∂cA
∂z

=
1

b
DBS

∂cB
∂z

. At
z =∞, cB = cB∞

3. If we define η ≡ z√
4Dt

and φ ≡ cA
cA0

so that

d2φ

dη2
+ 2η

dφ

dη
= 0

4. Let ψ ≡ dφ

dη
so that

dψ

dη
+ 2ηψ = 0→ dψ

ψ
= −2ηdη → ψ = C ′ exp

(
η2
)

5. From this, we can state that

φ = C
′′

+ C
′
ˆ η

0

exp
(
−η̄2

)
dη̄

6. Try
cA
cA0

= C1 + C2erf
(

z√
4DASt

)
and

cB
cB∞

= C3 + C4erf
(

z√
4DBSt

)
7. Applying the boundary conditions yields

cA
cA0

= 1−
erf
(

z√
4DASt

)
erf
(

zR√
4DASt

)

cB
cB∞

= 1−
erf
(

z√
4DBSt

)
erf
(

zR√
4DBSt

)

45



8. The mass transfer at the interface is then

NAz0 = −DAS
∂cA
∂z

∣∣∣∣
z=0

=
cA0

erf
(√

γ

DAS

)√DAS

πt

9. The average rate of absorption up to time t is then

NAz0,avg =
1

t

ˆ t

0

NAz0dt =
2cA0

erf
(√

γ

DAS

)√DAS

πt
= 2NAz0

8.1.2 Mass Transfer at an Interface with a Semi-Infinite Body

Problem: See Example 20.1-4 in BSL.

1. It will simply be stated that
cA
cA0

= 1− erf
(

z√
4DABt

)
2. At the interface,

NAz0 = cA0

√
DAB

πt

(a) Note that
d

dz
erf (u) =

2√
π

exp
(
−u2

) du
dz

8.2 Diffusion and Chemical Reaction in Isothermal Laminar Flow Along a Sol-
uble Flat Plate

Problem: See Example 20.2-1 in BSL.

• The velocity boundary layer thickness can be described by

δ =

√
12
νx

v∞

• The Schmidt number can be expressed as

1

Sc
=

4

3
x
d

dx
∆3 + ∆3 + 12

[
k
′′′

n c
n−1
A0 x

(n+ 1) v∞

]
∆2

where
∆ ≡ δc

δ

• For no reaction,
Sc−1/3 = ∆

for ∆ ≤ 1

• For a slow reaction,

∆ ≈ Sc1/3 − 1

7
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8.3 Taylor Dispersions
Problem: See Section 20.5 in BSL.

1. It will simply be stated that the axial dispersion coefficient is defined as

K ≡ R2〈vz〉2

48DAB
=

1

48
DABPe2

AB

where
Pe ≡ ReSc

2. The modified expression that holds for more values of DABt/R
2 is

K ≡ DAB +
R2〈vz〉2

48DAB
= DAB

(
1 +

1

48
Pe2

AB

)

8.4 Unsteady-State Interphase Diffusion
Problem: See Problem 20.D.2 in BSL.

1. It will simply be stated that the concentration profiles can be given by

c1 − c◦1
c◦2 −mc◦1

=

1 + erf
(

z√
4D1t

)
m+

√
D1/D2

and

c2 − c◦2
c◦1 − c◦2/m

=

1− erf
(

z√
4D2t

)
1/m+

√
D2/D1

where m is Henry’s law constant (i.e. the “distribution coefficient”)

2. The flux at the interface is

NAz|z=0 = −

(
c◦2 −mc◦1

m+
√

D1/D2

)√
D1

πt

9 Interphase Transport in Nonisothermal Mixtures

9.1 Rotating Disks
• The molar flux at the surface can be given by

NA0 = 0.620cA

(
D

2/3
ABΩ1/2

ν1/6

)
= k◦c,m∆cA

where Ω is in rad/s

• The mean Sherwood number can be given by

Sh =
k◦c,mD

DAB
= 0.620Re1/2Sc1/3
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• The Reynolds number is expressed in this case as

Re =
vL

ν
=
D2Ω

ν

• To relate the mole fraction to concentration,

ci =
xiρ∑
xiMi

where ρ is the density of the mixture

9.2 Correlation of Binary Transfer Coefficients in One Phase
• For forced convection around a sphere,

Sh = 2 + 0.60Re1/2Sc1/3

• Many of the heat transfer expressions we found earlier can be used for mass transfer analogues by
replacing the Nusselt number with the Sherwood number and replacing the Prandtl number with the
Schmidt number

9.3 Interaction of Phase Resistances (i.e. Leeching)
Problem: See Example 22.4-2 in BSL.

• It will simply be stated that

MA(t)
4

3
πR3c0

= 6

∞∑
n=1

Bn exp
(
−λ2

nDABt/R
2
)

• For infinite kc or N ,
λn = nπ

and

Bn =

(
1

πn

)2

• For finite kc or N ,
λn cot (λn)− (1−N) = 0

and

Bn =
N2

λ3
n

sin2 (λn)

λn − sin (λn) cos (λn)

48



10 Appendix

10.1 Gradient

∇f =
∂f

∂x
x̂+

∂f

∂y
ŷ +

∂f

∂z
ẑ (Cartesian)

∇f =
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂ +

∂f

∂z
ẑ (Cylindrical)

∇f =
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂φ
φ̂ (Spherical)

10.2 Divergence

∇ · −→v =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

(Cartesian)

∇ · −→v =
1

r

∂

∂r
(rvr) +

1

r

∂vθ
∂θ

+
∂vz
∂z

(Cylindrical)

∇ · −→v =
1

r2

∂

∂r

(
r2vr

)
+

1

r sin θ

∂

∂θ
(vθ sin θ) +

1

r sin θ

∂vφ
∂φ

(Spherical)

10.3 Curl

∇×−→v =

(
∂vz
∂y
− ∂vy

∂z

)
x̂+

(
∂vx
∂z
− ∂vz

∂x

)
ŷ +

(
∂vy
∂x
− ∂vx

∂y

)
ẑ (Cartesian)

∇×−→v =

(
1

r

∂vz
∂θ
− ∂vθ

∂z

)
r̂ +

(
∂vr
∂z
− ∂vz

∂r

)
θ̂ +

1

r

(
∂ (rvθ)

∂r
− ∂vr

∂θ

)
ẑ (Cylindrical)

∇×−→v =
1

r sin θ

(
∂ (vφ sin θ)

∂θ
− ∂vθ
∂φ

)
r̂ +

(
1

r sin θ

∂vr
∂φ
− 1

r

∂ (rvθ)

∂r

)
θ̂ +

1

r

(
∂ (rvθ)

∂r
− ∂vr

∂θ

)
φ̂ (Spherical)

10.4 Laplacian

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
(Cartesian)

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2

∂2f

∂θ2
+
∂2f

∂z2
(Cylindrical)

∇2f =
1

r2

∂

∂r

(
r2 ∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
(Spherical)
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